Evaluation of Corrective Action Alternatives

Pigeon Property 1705 Route 128 Westford, Vermont 05494

SMS # 2019-4863

December 22, 2023

44° 36' 45.78" N, 73° 0' 34.99" W

Prepared For: Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 <u>www.leenv.net</u>

LEE #19-124

TABLE OF CONTENTS

EXECU	JTIVE SUMMARY	3
1.0	INTRODUCTION AND SITE BACKGROUND	4
А.	Description and Environmental Setting	4
B.	Site History and Updated Conceptual Site Model	4
C.	Proposed Redevelopment Plan	6
2.0	SENSITIVE RECEPTOR IDENTIFICATION AND ASSESSMENT	6
А.	Buildings in the Vicinity	7
B.	Utility Corridors	7
C.	Wetlands and Surface Water Bodies	7
D.	Public and Private Water Supplies	7
E.	Site Users	7
3.0	IDENTIFICATION OF CORRECTIVE ACTION ALTERNATIVES	8
4.0	EVALUATION OF CORRECTIVE ACTION ALTERNATIVES	9
А.	Alternative A: Capping of Contaminated Soil and Deed Restriction1	0
B.	Alternative B: Excavation and Disposal of all Contaminated Soil to Depth1	0
C.	Alternative C: No Action Alternative1	1
5.0	RECOMMENDED CORRECTIVE ACTION ALTERNATIVE1	2

Appendices

- A. Maps and PlansB. Phase II ESA Data SummaryC. Budgetary Cost Estimates

EXECUTIVE SUMMARY

This document is an Evaluation of Corrective Action Alternatives (ECAA) as defined by the Vermont Department of Environmental Conservation (DEC). The purpose of this ECAA is to identify potential corrective action alternatives to mitigate human health and environmental risk posed by soil contamination at 1705 Route 128 in Westford, Vermont (Site). The Site owner is the Pigeon Family Living Trust

The Site includes a vacant residence and a former bus garage on approximately 3.3 acres of land, on the north side of Route 128, in the center of Westford. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858. Historic Site use has included residential, with a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property. A building was noted on or near the northeastern property line on historic (1869 and 1915) maps. The building was gone by 1948.

A Phase I and a Phase II Environmental Site Assessment (ESA) were completed in 2019, and a Supplemental Site Investigation (SSI) was completed in 2021. An abandoned, 1,100-gallon, gasoline underground storage tank (UST) was removed from the Site on June 2, 2020. An additional abandoned, 2,000-gallon gasoline UST was removed from the Site in 2022. A total of 81.06 tons of petroleum contaminated soil were removed from the Site for disposal in 2021, and 20.61 tons of petroleum contaminated soils were removed for disposal in 2022.

Groundwater in the vicinity of the former USTs is impacted with petroleum related Volatile Organic Compounds (VOCs) at concentrations above the Vermont Groundwater Enforcement Standards (VGES). This contamination is being monitored on an annual basis, and the monitoring is funded by Co-Operative Insurance Companies.

Soil contamination has been reported in shallow and deep soils on the Site. The contamination consists of Polycyclic Aromatic Hydrocarbons (PAHs) in shallow and deep soils in the vicinity of the area formerly used to store buses, auto parts, and machinery as well as in fill soils along a ravine. VOCs are present in deep soils in the vicinity of the removed USTs and former dispenser area.

Three possible corrective action alternatives were evaluated, including soil capping, soil excavation, and a "no action" alternative. Based on a quantitative evaluation of corrective action alternatives, the highest scoring Alternative A involves capping the contaminated soil and implementing an institutional control. Alternative B is the second highest scoring option and would result in removal of all identified contaminated soil. LEE recommends that a CAP be developed incorporating Alternative A as its remediation strategy.

1.0 INTRODUCTION AND SITE BACKGROUND

This document is an Evaluation of Corrective Action Alternatives (ECAA) as defined by the §35-604 of the 2019 Vermont Department of Environmental Conservation (DEC) Investigation and Remediation of Contaminated Properties Rule (I-Rule). The purpose of this ECAA is to identify potential corrective action alternatives to mitigate human health and environmental risk posed by soil contamination by soil contamination at 1705 Route 128 in Westford, Vermont (Site). Chittenden County Regional Planning Commission (CCRPC). This work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A01259. The Site owner is the Pigeon Family Living Trust. A Site Location Map is included in Appendix A.

A. Description and Environmental Setting

The Site includes a vacant residence and a former bus garage on approximately 3.3 acres of land, on the north side of Route 128, in the center of Westford. The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system.

The Site was developed as of the earliest record located thus far (1858). The property use has included residential with a gasoline filling station and automotive and bus repair. According to the current owner, the gasoline tanks were no longer used after circa 1985. A small store was also once present on the southeastern portion of the Site. A tannery was present on the adjoining property to the west on an 1869 map. It is unknown how long the tannery operated.

The on-Site residence is heated with fuel oil. The garage is not currently heated but appears to have been heated with wood, propane, and/or fuel oil historically. The buildings are served by a private dug supply well and at least one septic system. The configuration and location of the septic system is not known.

B. Site History and Updated Conceptual Site Model

The Site is approximately 470 feet above current sea level on the southern portion of the Site and drops to approximately 435 feet above current sea level at the northern terminus of the parcel boundary. This area has undergone extensive deposition and erosional processes through recent glacial events. The retreat of the Laurentide Ice Sheet led to the formation of glacial Lake Vermont approximately 13,500 years ago. The elevation of the lake surface was approximately 620 feet

December 22, 2023

above sea level, significantly higher than the elevation of the current Lake Champlain. Streams flowing off the melted glacier deposited many sediments, with larger sediments deposited near the front of the glacier and finer grained sediments deposited away from the front of the glacier. Clay and silt varves were deposited in the calmer portions of Lake Vermont.¹

The data obtained from soil borings indicate the soils at the Site consist of an approximately 3' thick layer of sand with varying amounts of silt overlaying dense, native clay. The clay contained distinct sand layers in each boring, and distinct varves have been noted in several soil borings. This data suggests the Site was likely located in a calmer portion of Lake Vermont. Sand layers noted in the clay point to periods of higher energy deposition in the lake.

Bedrock was not encountered in the environmental investigations performed to date. According to the most recent geologic map of Vermont, the bedrock in the vicinity of the Site consists of Cambrian and Neoproterozoic aged schist in the Pinnacle formation and the overburden deposits in the area of the Site are mapped as boulders in clay.²

The depth to groundwater at the Site varied between the groundwater sampling events performed to date. Groundwater levels in December 2020 were 0.45' to 6.89' higher than those reported in June 2020. The groundwater levels in January 2021 were 0.38' to 4.67' lower than those reported in December 2020. The depth to water in January 2020 ranged from 2.09' bg at MW-7 to 10.27' bg at MW-5. Groundwater flow is generally toward the north and northeast. The hydraulic gradient in the southern portion of the Site has been calculated between 5 and 10%, while the hydraulic gradient on the central and northern portions of the Site has been calculated between 16 and 22%

The overall low permeability of the native soils implies the migration of the groundwater contaminant plume is limited, and it is not expected to travel off-Site. The low permeability of the soils was evident during sampling, where very low recharge has been noted in the groundwater monitoring wells. The sand layers noted during drilling are likely the mechanism for the migration of the low-level dissolved phase groundwater contamination away from the UST area.

Shallow and deep soils are impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in a portion of the parking area to the east. Shallow soils are impacted with PAHs in the area to the north and northeast of the garage. The limits of the shallow soil PAH contamination have been defined. The extent of the contamination appears to correlate to the areas on the Site where buses, auto parts, and other machinery were previously stored

¹ S.F. Wright

² ANR Atlas.

and possibly where fill soils have been deposited on-Site. The depth of soil PAH contamination appears to be fairly confined to the top 1.5 feet. However, one deeper soil sample (SB-122s) contained PAH concentrations above background from 2-4 feet below grade.

Groundwater is impacted with petroleum related VOCs at concentrations above the VGES and the VI standards for groundwater in the vicinity of the former UST. The VGES exceedances are primarily limited to the former UST, with low-level contamination extended approximately 100' to the west, 50' to the north, and 75' to the east. The northern, southern, and western limits of the dissolved-phase contaminant plume have been defined. The eastern edge of the plume is not fully defined, but it likely terminates in the vicinity of MW-8 based on the fairly low concentration of naphthalene reported there.

Soil gas sampling results indicate several VOCs are present in the soil gas at the Site including benzene, carbon tetrachloride, ethylbenzene, methylene chloride, tetrachloroethene (PCE), acetone, ethanol, isopropanol, tetrahydrofuran, toluene, Freon 11, and xylenes. None of the reported concentrations exceeded residential VI standards. The results suggest that while VOCs were detected in all of the soil gas samples obtained, since none of these concentrations exceeded residential VI standards, Site users are not likely to be impacted by these contaminants via vapor intrusion into the structures.

The most apparent source(s) of contamination at the Site include the leaking gasoline USTs removed from the Site (soil and groundwater), historic USTs (soil and groundwater), and historic use and storage of hazardous substances and petroleum products (soil).

C. Proposed Redevelopment Plan

The preliminary redevelopment plan for the Site includes a combination of residential and commercial redevelopment, as well as a public path to the Browns River.

2.0 SENSITIVE RECEPTOR IDENTIFICATION AND ASSESSMENT

Potential receptors of contamination include Site users. Shallow and deep soils are impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in a portion of the parking area to the east. Shallow soils are impacted with PAHs in the area to the north and northeast of the garage. Groundwater is impacted with petroleum related VOCs at concentrations above the VGES and the VI standards for groundwater in the vicinity of the former UST. Site users would not be expected to come into contact with contaminated groundwater given its average depth of 2-11' bg.

A. Buildings in the Vicinity

There are no known soil gas risks on-Site currently. Soil gas sampling was conducted under both existing buildings and in additional exterior locations. None of the VOCs reported in the soil gas samples exceeded residential VI standards. Site users are not likely to be impacted by these contaminants via vapor intrusion into the existing or future structures.

B. Utility Corridors

Buried underground utilities known to exist on or in the immediate vicinity of the Site include the water line from the well to the residence and garage, and the septic systems for the buildings. The Westford Common to the south of the Site has a series of drainage lines, which connect to a drainage culvert on the eastern portion of the Site. The drainage outfall has been inspected several times and no petroleum odors or sheens have been noted to date.

C. Wetlands and Surface Water Bodies

The Browns River abuts the property on its northeast side and is approximately 450' from the former UST location. There is also an unnamed tributary that runs through the western portion of the property, and this tributary is approximately 200 feet northwest of the former UST location. A wetland delineation has been completed and the wetland locations are identified on the Existing Conditions Plan in Appendix A. Based on the results of the investigation, surface water does not appear to be at risk.

D. Public and Private Water Supplies

The Site and nearby properties are served by private wells. Approximately 28 water supply wells are depicted on the ANR Natural Resources Atlas within a quarter mile of the Site. The on-Site supply well was sampled and tested for VOCs, and no detections or exceedances of regulatory standards were noted. The data suggests off-Site supply wells are unlikely to be impacted from contamination at this Site.

E. Site Users

The Site is currently unoccupied and not being used except for storage by the owners of the property. Portions of the area have shallow soil contamination and future Site users could come into contact with this soil. Contaminated soils would need to be properly managed during redevelopment to protect Site users.

3.0 IDENTIFICATION OF CORRECTIVE ACTION ALTERNATIVES

Corrective action is warranted to reduce human and environmental exposure to contamination identified at the Site. Per Section 35-604(c) of the I-Rule, corrective action alternatives that eliminate exposure pathways to sensitive receptors have been identified. A minimum of two corrective action alternatives must be considered according to the I-Rule. These include:

- 1) An alternative that reduces the toxicity, mobility, or volume of the hazardous materials released to the extent feasible. This alternative shall minimize the need for long term management at the Site; and,
- 2) An alternative that involves little or no treatment but controls impacts to sensitive receptors through engineered controls, containment, long term monitoring, and institutional controls.

Corrective action alternatives that satisfy these criteria have been addressed in this section, as well as a "no-action" alternative that leaves the Site in its current condition with the only change being restriction on all access. The alternatives considered include the following:

- 1) Alternative A: Capping of contaminated soil. This alternative involves no treatment, but controls impacts to sensitive receptors through engineered controls and an institutional control.
- 2) Alternative B: Removal of all contaminated soil from the Site. This alternative reduces the toxicity, mobility, and volume of contamination by removing it from the Site.
- 3) Alternative C: No action alternative, including fencing and filing of an institutional control to prohibit occupancy.

4.0 EVALUATION OF CORRECTIVE ACTION ALTERNATIVES

Section 35-503(d) of the I-Rule indicates that each proposed cleanup alternative shall be evaluated. LEE has evaluated the three corrective action alternatives outlined in Section 5.0 using the following criteria established per the I-Rule and EPA's required evaluation criteria of the alternative's climate change resiliency. The results of the ranking are as follows.

Criteria	Alternative A	Alternative B	Alternative C
1. Compliance with legal requirements	5	5	3
2. Overall protection of human health and environment	5	5	0
3. Long-term effectiveness and permanence	5	5	0
4. Land Use Restriction	3	5	3
5. Reducing toxicity, mobility or volume through treatment	3	0	0
6. Short-term effectiveness	5	5	3
7. Implementability	5	5	5
8. Cost	3	0	5
9. Environmental impact and sustainability/resiliency	3	0	3
10. Community acceptance	5	5	3
Total ranking	42 points	35 points	25 points

Table 4-1: Summary of Corrective Action Alternatives Ranking

Criteria 1) Compliance with Legal Requirements

0-Clearly out of compliance with one or more legal requirements

3-uncertain legal status

5-compliant with legal requirements based on experience

<u>Criteria 2) Overall protection of human health and</u> <u>environment</u>

0-ineffective protection of human health and environment 3-protective of human health or environment; may result in risk reduction

5-protective of both health and environment, highly effective

<u>Criteria 3)</u> Long-term effectiveness and permanence 0-ineffective and /or not permanent

3-somewhat effective or permanent, requires long-term oversight

5-highly effective and permanent based on experience

Criteria 4) Land use restriction

0-land use restriction required with inspections to verify system integrity

3-land use restriction required; no inspections necessary 5-no land use restriction required

<u>Criteria 5) Reducing toxicity, mobility or volume through</u> <u>treatment</u>

0-no waste treatment proposed and no treatment benefit 3- toxicity, mobility or volume reduction forecast.

5- treatment proposed that eliminates toxicity, mobility or volume

Criteria 6) Short-term effectiveness

0-ineffective immediately following implementation 3-somewhat effective immediately following implementation 5-highly effective immediately following implementation

<u>Criteria 7) Implementability</u>

0-difficult to implement using readily available technologies

3-possible to implement using technologies that may not be locally available

5-high likelihood of implementation using readily available local technologies

<u>Criteria 8) Cost</u>

0-highest predicted implementation costs 3-middle predicted implementation costs 5-lowest predicted installation

Criteria 9) Environmental impact and

sustainability/climate change resiliency

0-highest negative impact 3-median or neutral impact

5-lowest negative impact

Criteria 10) Community acceptance

0-likely to be met with opposition by the local community 3-May be met with some opposition but other factors may compensate 5-unlikely to be met with opposition by the local

community

A. Alternative A: Capping of Contaminated Soil and Deed Restriction

This alternative specifies partial removal of contaminated soil to accommodate the proposed redevelopment, and a clean cap will be placed over the residual shallow-contaminated soils at the Site. The protective cap will consist of either a minimum of 18" of clean soil, or a minimum of 6" of concrete or asphalt (sidewalks, parking lots, and driveways). The protective caps will isolate the contaminated soil from exposure.

Excavation and off-Site disposal of some PAH-contaminated soil will need to occur to accommodate the clean caps. Preliminary calculations indicate that approximately 425 cubic yards would be transported and disposed of off-Site at a certified solid waste facility. Characterization soil testing would be needed to fulfill disposal facility acceptance requirements. The contaminated soils would be properly transported and disposed of in accordance with state and federal regulations. Clean soil testing would be needed to verify the replacement soils are suitable for use.

A layer of geotextile fabric would be placed under the protective caps, to serve as a warning layer in the event of soil erosion or unauthorized excavations. A Certificate of Completion would be filed with the Town of Westford indicating the presence of residual contamination. Annual inspections would not be required by DEC because the proposed capping structures fully meet the I-Rule specifications.

This alternative would provide overall protection of human health and the environment and would serve as a long-term remedy to the contamination. This alternative can be implemented using readily available local technologies and would not require a substantial amount of truck traffic that would be realized in a total soil excavation remedy. Long-term monitoring of the clean caps and possible operations and maintenance costs to repair damage would be required. The environmental impact, sustainability, and climate change resiliency of this alternative are better than soil excavation alternatives due to less trucking and fuel consumption. Community acceptance is anticipated with this alternative.

Information on current prices for excavation equipment and necessary construction supervision and coordination were used to estimate the cost for Alternative A. This information, contained in Appendix C, indicates that the cost for this alternative is approximately \$345,000 including 15% contingency.

B. Alternative B: Excavation and Disposal of all Contaminated Soil to Depth

This alternative specifies that all contaminated soils at the Site would be transported and disposed of off-Site at an approved facility. The extent of the contaminated soil is outlined in the Depth of Contaminated Soil Excavation Map in

Appendix A. Preliminary calculations indicate that approximately 958 cubic yards, or 1,437 tons, would be removed from the Site.

Characterization soil testing would be needed to fulfill disposal facility acceptance requirements. The contaminated soils would be properly transported and disposed of in accordance with state and federal regulations.

Clean fill would be imported to the Site. The clean soil source would be tested for the presence of contaminants to ensure it meets applicable regulatory standards.

This alternative would provide overall protection of human health and the environment and would serve as a long-term remedy to the contamination. This alternative can be implemented using readily available local technologies. Longterm monitoring would not be required. The environmental impact of this option is higher than for capping the Site given the amount of trucking that would be required to dispose of the soil. A significant amount of fuel consumption would be required for this option.

Information on current prices for excavation equipment and necessary construction supervision and coordination were used to estimate the cost for Alternative B. This information, contained in Appendix C, indicates that the cost for this alternative is approximately \$510,000 including a 15% contingency.

C. Alternative C: No Action Alternative

This alternative specifies that the Site would remain as-is without capping contaminated soils. Under a no-action scenario, no remediation would take place and the Site would need to be fenced off to prevent access and exposure to contamination. No soils would be relocated or transported off-Site. A deed restriction would be filed with the Town of Westford.

The principal steps in performing this alternative would include: installation of additional chain link fencing and signage; creating a permanent record of the fence location; and filing of a deed restriction.

This alternative would comply with DEC requirements, would provide overall protection of human health and would provide short-term and long-term effectiveness and permanence. This alternative can be implemented using readily available local technologies (fencing) and would not include significant trucking or earth work. Long-term monitoring and inspections of the fencing, and possible operations and maintenance costs to repair damage would be needed. The environmental impact, sustainability, and climate change resiliency is more favorable due to a low carbon footprint.

The current prices for equipment, labor, and coordination were used to estimate the total cost range. This information is contained in Appendix C and it indicates that the probable cost for this alternative is approximately \$72,300 including a 15% contingency.

5.0 RECOMMENDED CORRECTIVE ACTION ALTERNATIVE

Based on a quantitative evaluation of corrective action alternatives, the highest scoring Alternative A involves partial removal and capping the residual contaminated soil, and an institutional control. LEE recommends that a Corrective Action Plan (CAP) be developed incorporating Alternative A as its remediation strategy.

APPENDIX A

MAPS AND PLANS

Image: constrained of the second of the s	Star Rebor Found, .7 Addre Grade, Leaning, Poorted al Notes V V V V V V V V V V V V V V V V V V V
	LOCATION OF EXISTING WASTEWATER DISPOSAL SYSTEM UNKNOWN AND NEEDS TO BE FURTHER INVESTIGATION
LEGEND	
CATCH BASIN	
DRAIN MANHOLE DRAIN MANHOLE	
SEWER MANHOLE S ^{ESMIT}	
CURB STOP \otimes	i / Margaran
GATE VALVE	
SIGN POST T	465_
LIGHT POLE	$\frac{466}{2}$
FIRE HYDRANT	
ENTRY	468
IRON PIN •	1705 VT-128
MONUMENT	$\overline{} = - \overline{} = - \overline{} + $
MONITORING WELL	
DRILL HOLE O	
TEST PIT	
HEADWALL O	
STONEWALL	
DECIDUOUS TREES	
SHRUB	
OIL TANK [OIL] PROPANE TANK (PROP)	
TRAILER DISCONNECT	
TELEPHONE PEDESTAL	
SEWER DROP	
HANDICAP PARKING	
UNDERGROUND DRAINAGE - D -	
UNDERGROUND SEWER - S	
SEWER FORCE MAIN FM	
UNDERGROUND TELEPHONE T	
UNDERGROUND WATER - W -	\downarrow \land \land \land \land \land \land
OVERHEAD ELECTRIC OHE	
OVERHEAD TELEPHONE OHI	
CONTOURS .95-	
STOCKADE FENCE	UNDERDRAIN / / / /
CHAIN LINK FENCE -////	
SPLIT RAIL FENCE -•-•-•	
TREE LINE	a - a - a - a - a - a - a - a - a - a -
GUARD RAIL BARBED WIRE -X X X X	
CENTERLINE	
BOUNDARY LINE	
STREAM	
CURB ———	

))))))))) 20 4 = RVAL: '1	DN OF EXISTING WASTEWATER
		AL SYSTEM UNKNOWN AND TO BE FURTHER INVESTIGATION
CATCH BASIN DRAIN MANHOLE SEWER MANHOLE AREA DRAIN CURB STOP GATE VALVE SIGN POST UTILITY POLE LIGHT POLE	EXISTINGPROPO ECB \blacksquare D $EDMH$ \bigcirc \odot $ESMH$ \bigcirc \odot EAD \bigcirc \odot \bullet \bigcirc \odot \bullet \bigcirc \odot \bigcirc \bigcirc \odot \bigcirc \bigcirc \odot \bigcirc \bigcirc \odot \bigcirc <th></th>	
FIRE HYDRANT FLUSHING HYDRANT ENTRY IRON PIN DRINKING WELL	₽°° С```````````````````````````````````	465 466 467 467
MONITORING WELL DRILL HOLE TEST PIT PERC TEST THRUST BLOCK REDUCER INLET PROTECTION		
HEADWALL STONEWALL RIP RAP SILT FENCE CONIFERS		
DECIDUOUS TREES SHRUB OIL TANK PROPANE TANK TRAILER DISCONNECT TELEPHONE PEDESTAL WATER DROP HANDICAP PARKING UNDERGROUND DRAINAGE UNDERGROUND ELECTRIC UNDERGROUND SEWER SEWER EORCE MANY		
UNDERGROUND UTILITY UNDERGROUND WATER OVERHEAD UTILITY CONTOURS SURFACE WATER FLOW STOCKADE FENCE	— U — U — W — W — OHU — OH `_95-` 95	CO 6" REVEAL AS NOT 12' MIN. GRAVEL SHOULDER (TYP)
PICKET FENCE PICKET FENCE CHAIN LINK FENCE TREE LINE GUARD RAIL BARBED WIRE CENTERLINE BOUNDARY LINE WETLANDS		LOAM & LOAM & SEED (TYP) 3:1 3:1 3:1 3:1 3:1 3:1 3:1 3:1
STREAM CURB		<u>TYPICAL PAVEMENT SECTION</u>

	20 ERVAL: '1	40	
LEGEND CATCH BASIN DRAIN MANHOLE SEWER MANHOLE AREA DRAIN CURB STOP GATE VALVE SIGN POST UTILITY POLE	EXISTING ECB $ECDHH$ $S ESMH$ EAD EAD V T	PROPOSED CB DMH SMH SMH AD ×	
LIGHT POLE FIRE HYDRANT FLUSHING HYDRANT ENTRY IRON PIN		₽♀♀℃。	465 466 467
DRINKING WELL MONITORING WELL DRILL HOLE TEST PIT PERC TEST THRUST BLOCK REDUCER INLET PROTECTION		●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	
HEADWALL STONEWALL RIP RAP SILT FENCE CONIFERS DECIDUOUS TREES	∽∞∞∞ 	€ O	
SHRUB OIL TANK PROPANE TANK TRAILER DISCONNECT TELEPHONE PEDESTAL WATER DROP SEWER DROP HANDICAP PARKING UNDERGROUND DRAINAGE		<i>OIL</i> <i>®®</i> ₽ IS I I I I I I I I I I I I I I I I I I	
UNDERGROUND ELECTRIC UNDERGROUND SEWER SEWER FORCE MAIN UNDERGROUND UTILITY UNDERGROUND WATER OVERHEAD UTILITY CONTOURS SURFACE WATER FLOW STOCKADE FENCE PICKET FENCE CHAIN LINK FENCE TRFF LINF	— E — S — FM — U — U — W — OHU — ` _95 - ` _ 	E	
IREE LINE GUARD RAIL BARBED WIRE CENTERLINE BOUNDARY LINE WETLANDS STREAM CURB			

APPENDIX B

PHASE II ESA DATA SUMMARY

Brownfields Phase II ESA Report Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863, EPA RFA 19093

July 24, 2020

Prepared for:

Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 <u>www.leenv.net</u>

LEE #19-138

Contents

1.0	EXECUTIVE SUMMARY	3
2.0	SITE INFORMATION	5
3.0	CURRENT USE OF THE SITE	6
4.0	CURRENT ADJOINING PROPERTY USES	6
5.0	SITE DESCRIPTION	6
6.0	LATITUDE/LONGITUDE	6
7.0	PROPERTY HISTORY	7
8.0	SITE CONTAMINANT BACKGROUND	7
A.	Release Date and Description	7
B.	Release Report Date	8
С.	Release Response Actions	8
D.	Previous Environmental Documents	8
E.	Copy of Previous Environmental Documents	9
F.	List of Governmental Records Reviewed	9
9.0	UPDATED CONCEPTUAL SITE MODEL	9
A.	Updated Site Conceptual Model	9
B.	Potential Contamination Sources	.11
С.	Potential Receptors	.11
D.	Utility Corridors	.11
E.	Water Bodies and Wetlands	.11
F.	Water Supplies	.11
G.	Site Users	.12
10.0	WORK PLAN DEVIATIONS	.12
11.0	SAMPLE COLLECTION DOCUMENTATION	.12
12.0	CONTAMINATED MEDIA CHARACTERIZATION	.13
A.	Gasoline UST Removal	.14
B.	Soil	.15
С.	Groundwater	.16
D.	Supply Well Sampling	.17
E.	Other Media	.17
F.	Site-Specific Values	.17
13.0	SITE-SPECIFIC RISK ASSESSMENT	.17
14.0	MAPS	.17
15.0	DISCUSSION	.18
A.	Soil Sample Results	.18
B.	Groundwater Sample Results	.19
С.	Drinking Water Sample Results	.20
16.0	DATA PRESENTATION	.20
17.0	QA/QC SAMPLE RESULTS	.20
18.0	INVESTIGATION DERIVED WASTE	.20
19.0	CONCLUSIONS AND RECOMMENDATIONS	.20
20.0	SIGNATURE AND CERTIFICATION	.22
21.0	MAPS AND APPENDICES	.23

1.0 EXECUTIVE SUMMARY

LE Environmental LLC (LEE) conducted a Brownfields Phase II Environmental Site Assessment (ESA) at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The ESA was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated February 25, 2020, approved March 6, 2020, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). This work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

The Site includes a vacant residence and a former bus repair garage and gasoline filling station on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858, and historic Site use has include residential, a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property, and a tannery was noted on the adjoining property to the west in 1869.

The Site is located on the north side of Route 128. The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The DEC indicates that the Site is in a designated "urban background" zone for soil contamination. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system. No odors or sheens were noted on the water exiting the outlet pipe. Portions of the northern and eastern ends of the property appear to have wetland vegetation.

Three structures are currently present on the property. The residence is a twostory, wood framed structure with a full basement. The garage is a single-story, wood framed structure, with a slab on-grade foundation. The third building is a small wood framed shed.

LEE prepared a Phase I Environmental Site Assessment (ESA) report for the property in September 2019, and three Recognized Environmental Conditions (RECs) were identified during the Phase I ESA:

1. Historic use of the property for bus/automotive repair and as a gasoline filling station.

July 24, 2020

- 2. Possible presence of an abandoned underground storage tank (UST).
- 3. Historic adjoining property use as a tannery.

A Phase II ESA was recommended to determine whether contamination is present on the Site due to the identified RECs.

This Phase II ESA included removal of the abandoned gasoline UST, soil boring advancement, groundwater monitoring well installation, soil sampling, groundwater sampling, and drinking water sampling. Soils are the Site consist of sand with varying amounts of silty overlaying dense, native clay. The clay contained distinct sand layers in each boring.

An abandoned, 1,100-gallon, gasoline UST at the Site was removed from the Site on June 2, 2020. The UST was a relic of the former gasoline filling station that operated on the Site from circa 1940 through the mid 1980s. The age of the UST and piping is not known, but it appeared to be at least 80 years old. The UST was a single-walled tank, and piping from other former USTs was also encountered in the excavation. The piping for the removed UST appeared to have been cut near the former pump island, and had paper stuffed in the end. It was buried approximately 1.5' to 2' below grade, and was found to be in failed condition upon removal, with extensive rust, pitting, and several large holes in the bottom of the UST. Groundwater was encountered at 6' below grade in the excavation, and a sheen was noted on the groundwater.

The photoionization detector PID readings ranged from 17.1 parts per million (ppm) in soil under the former dispenser island to 2,374 ppm at the top of the tank where piping (not attached to this tank) was found. PID readings ranging from 1,286 ppm to 1644 ppm were observed under the UST, which was also where groundwater was encountered.

A pipe with unknown purpose was noted on the southern wall of the UST excavation. The excavation could not be extended in this direction due to the presence of Route 128 and special permitting, traffic control and engineering would be required to dig in this area.

The depth to water ranged from 4.45' below grade in the southern portion of the Site to 11.59' below grade in the northern portion of the Site. The overall groundwater flow beneath the Site appears to be northerly. The approximate hydraulic gradient is approximately 10% on the southern portion of the Site and 16% in the central and northern portions of the Site.

Groundwater is impacted with petroleum related Volatile Organic Compounds (VOCs) at concentrations above the Vermont Groundwater Enforcement Standards (VGES) and above the vapor intrusion standards for groundwater in the vicinity of the former UST, and the plume extends northerly at least 200 feet. The limits of the

dissolved-phase contaminant plume were not defined by this investigation. The overall low permeability of the native soils implies the migration of the contaminant plume will be limited. The low permeability of the soils was evident during sampling, where very low recharge was noted in the groundwater monitoring wells.

Shallow and deep soils are impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in the parking area to the east. Shallow soils are impacted with Polycyclic Aromatic Hydrocarbons (PAHs) in the area to the north of the garage. The limits of the contamination were not defined by this investigation.

No VOCs were reported in the drinking water sample obtained during this Phase II ESA.

LEE has developed the following recommendations during this Phase II ESA.

Additional delineation of soil and groundwater contamination should be completed. Additional groundwater sampling of the existing groundwater monitoring wells should be performed prior to delineation. A soil vapor investigation should be performed to ensure the contamination detected is not impacting the indoor air quality in the residence and garage. In addition, soil vapor should be investigated in areas slated for redevelopment. A suspect pipe near Route 128 should be investigated via a geophysical investigation in the roadway.

Once delineation is completed, an evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) could be prepared per the requirements of Subchapter 6 of the DEC's I-Rule.

2.0 SITE INFORMATION

LE Environmental LLC (LEE) conducted a Brownfields Phase II Environmental Site Assessment (ESA) at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The ESA was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated February 25, 2020, approved March 6, 2020, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). This work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

Appendix E

Laboratory Analytical Results

Liquid Level Monitoring Data Brownfields Phase II ESA Pigeon Property 1705 Route 128 Westford, Vermont

Measurement Date: June 17, 2020

	Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW-1	99.22	-	4.45	-	-	-	-	94.77
MW-2	99.74	-	6.26	-	-	-	-	93.48
MW-3	99.03	-	11.59	-	-	-	-	87.44
MW-4	98.68	-	11.07	-	-	-	-	87.61
MW-5	81.18	-	10.97	_	_	_	_	70.21

Notes:

All Values Reported in Feet

btoc - Below Top of Casing

Elevation data relative to 100' at SE corner of garage

Brownfields Phase II Environmental Site Assessment **Pigeon Property** Westford, Vermont Soil Data Summary Page 1 of 11

-						Pag	e 1 01 11								
Sample Identification	UST-1	Dup UST-1	SB-1	SB-2S	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5				UCC Man
Sample Depth (ft. bg)	6	6	0-1.5	0-1.5	13-15	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential	VSS NOII-
PID Reading (ppm)	1,644	1,644	0.2	193.0	1,392	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)	(ma (ha)
Sample Date	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20				(ту/ку)
VOCs, EPA Method 8260C (mg/kg)															
Dichlorodifluoromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	87	370	-	-
Chloromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	110	460	-	-
Vinyl Chloride	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.03	-	-	0.10	0.59
Bromomethane	ND<0.2	ND<0.2	ND<0.1	ND<0.2	ND<0.1	ND<0.2	ND<0.2	ND<0.1	ND<0.2	ND<0.2	ND<0.1	6.8	30	-	-
Chloroethane (ethyl chloride)	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	14,000	57,000	-	-
Trichlorofluoromethane	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	23,000	350,000	-	-
Diethyl Ether	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.7	-	-	-	-
Acetone	ND<3	ND<2	ND<2	ND<2	ND<3	ND<2	ND<2	ND<2	ND<2	ND<2	ND<3	-	-	40,609	100,028
1 ,1-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	230	1,000	-	-
Methylene chloride	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	57	1,000	-	-
Carbon disulfide	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	608	662
MTBE	ND<0.1	ND<0.1	ND<0.1	ND<0.1	1.8	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	649	4,464
trans-1,2-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	1,402	18,137
1,1-Dichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	2.1	13
2,2-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	-	-
cis-1,2-Dichloroethene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	140	1,814
2-Butanone (MEK)	ND<0.6	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.7	-	-	16,952	26,991
Bromochloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	193	597
Tetrahydrofuran(THF)	ND<0.6	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.7	-	-	-	-
Chloroform	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	0.32	1.4	-	-
1,1,1-Trichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	8,100	36,000	-	-
Carbon tetrachloride	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	0.37	2.2
1 ,1-Dichloropropene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	-	-
Benzene	43	32	ND<0.06	ND<0.05	8.7	ND<0.05	0.079	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	0.70	4.2
1,2-Dichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	0.29	1.7
Trichloroethene (TCE)	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	0.68	6.5
1,2-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	1.5	9.1
Dibromomethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	24	99	-	-
Bromodichloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	0.29	1.3	-	-
4-Methyl-2-pentanone(MIBK)	ND<0.6	ND<0.6	ND<0.6	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.6	ND<0.5	ND<0.5	ND<0.7	33,000	140,000	-	-
cis-1,3-Dichloropropene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1.8	8.2	-	-
Toluene	610	520	ND<0.06	ND<0.05	63	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	706	798
trans-1,3-Dichloropropene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.6	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1.8	8.2	-	-
1,1,2-Trichloroethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1.1	5	-	-
2-Hexanone	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	200	1,300	-	-
Tetrachloroethene (PCE)	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07			2.4	14
1,3-Dichloropropane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	1,600	23,000	-	-
Dibromochloromethane	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	8.3	39	-	-
1,2-Dibromoethane(EDB)	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.03	-	-	0.02	0.14
Chlorobenzene	ND<0.06	ND<0.06	ND<0.06	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.06	ND<0.05	ND<0.05	ND<0.07	-	-	414	726

NOTES:

Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule

EPA Regional Screening Levels (RSLs) from May 2020 RSL Summary Table. RSLs not included when a VSS exists.

Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.

Blank Cell=no published value (VSS) or published value not applicable (RSL)

Brownfields Phase II Environmental Site Assessment Pigeon Property Westford, Vermont Soil Data Summary Page 2 of 11

NOTES:

Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule

EPA Regional Screening Levels (RSLs) from May 2020 RSL Summary Table. RSLs not included when a VSS exists.

Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.

Dashed Cell=no published value (VSS) or published value not applicable (RSL)

* Standard for 1,3,5 and 1,2,4 TMB

Brownfields Phase II Environmental Site Assessment **Pigeon Property** Westford, Vermont Soil Data Summary Page 3 of 11

						-									
Sample Identification	UST-1	Dup UST-1	SB-1	SB-2S	SB-2D	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5				VCC Non
Sample Depth (ft. bg)	6	6	0-1.5	0-1.5	13-15	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential	VSS NUII-
PID Reading (ppm)	1,644	1,644	0.2	193.0	1,392	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)	(ma/ka)
Sample Date	6/2/20	6/2/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20				(ту/ку)
PAH EPA Method 8270D (mg/kg)															
Naphthalene	3.5	3.4	ND<0.009	0.012	0.018	ND<0.008	0.012	ND<0.009	0.045	0.024	ND<0.009	-	-	2.7	16
2-Methylnaphthalene	2.6	2.5	ND<0.009	0.0082	0.013	ND<0.008	0.0094	ND<0.009	0.019	0.0092	ND<0.009	240	3,000	-	-
1-Methylnaphthalene	1.2	1.2	ND<0.009	ND<0.007	ND<0.01	ND<0.008	0.0094	ND<0.009	0.017	ND<0.008	ND<0.009	18	73	-	-
Acenaphthylene	0.042	0.036	ND<0.009	0.044	ND<0.01	0.017	0.038	ND<0.009	0.37	0.23	ND<0.009	-	-	-	-
Acenaphthene	0.011	0.010	ND<0.009	ND<0.007	ND<0.01	ND<0.008	ND<0.008	ND<0.009	0.021	0.011	ND<0.009	3,600	45,000	-	-
Fluorene	0.028	0.026	ND<0.009	ND<0.007	ND<0.01	ND<0.008	ND<0.008	ND<0.009	0.11	0.051	ND<0.009	-	-	2,301	26,371
Phenanthrene	0.066	0.061	ND<0.009	0.10	ND<0.01	0.049	0.013	ND<0.009	1.0	0.47	ND<0.009	-	-	-	-
Anthracene	0.016	0.015	ND<0.009	0.031	ND<0.01	0.011	0.012	ND<0.009	0.26	0.12	ND<0.009	18,000	230,000	-	-
Fluoranthene	0.079	0.079	ND<0.009	0.28	ND<0.01	0.10	0.082	0.0090	2.2	1.4	0.011	-	-	2,301	26,371
Pyrene	0.082	0.084	ND<0.009	0.26	ND<0.01	0.10	0.12	ND<0.009	2.2	1.5	ND<0.009	1,800	23,000	-	-
Benzo(a)anthracene	0.041	0.041	ND<0.009	0.15	ND<0.01	0.052	0.033	ND<0.009	1.4	0.97	ND<0.009	1.1	21	-	-
Chrysene	0.047	0.046	ND<0.009	0.16	ND<0.01	0.058	0.039	ND<0.009	1.4	1.0	ND<0.009	110	2,100	-	-
Benzo(b)fluoranthene	0.087	0.083	ND<0.009	0.23	ND<0.01	0.084	0.15	ND<0.009	2.2	1.5	ND<0.009	1.1	21	-	-
Benzo(k)fluoranthene	0.033	0.031	ND<0.009	0.075	ND<0.01	0.027	0.051	ND<0.009	0.76	0.56	ND<0.009	11	210	-	-
Benzo(a)pyrene	0.067	0.064	ND<0.009	0.16	ND<0.01	0.065	0.12	ND<0.009	1.9	1.3	ND<0.009	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.066	0.059	ND<0.009	0.097	ND<0.01	0.048	0.090	ND<0.009	1.0	0.74	ND<0.009	1.1	21	-	-
Dibenz(a,h)anthracene	0.013	0.012	ND<0.009	0.019	ND<0.01	0.0094	0.019	ND<0.009	0.24	0.16	ND<0.009	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.068	0.061	ND<0.009	0.087	ND<0.01	0.045	0.087	ND<0.009	0.84	0.62	ND<0.009	-	-	-	-
Total Reported PAHs	8.0	7.8	ND	1.71	0.031	0.67	0.88	0.0090	16.0	10.7	0.011	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.1	0.1	0.010	0.23	0.012	0.093	0.17	0.010	2.6	1.8	0.010	-	-		0.58 (urban bkgd)
TOTAL METALS, EPA Method 6020 (mg	g/kg, dry)														
Total Arsenic	8.4	6.9	4.1	3.1	8.6	6.0	2.7	6.4	5.4	4.0	6.9	-	-	16	16
Total Barium	130	140	110	65	140	43	21	140	82	56	140	-	-	11,247	127,382
Total Cadmium	0.56	0.52	ND<0.5	2.0	ND<0.5	65	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	6.9	87
Total Chromium	39	42	34	23	39	36	11	35	23	15	39	-	-	40,223	360,223
Total Lead	68	56	12	150	16	45	15	14	24	26	18	-	-	400	800
Total Mercury	0.11	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	3.1	3.1
Total Selenium	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	390	5,800	-	-
Total Silver	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	237	2,483
TPH (mg/kg, dry)															
TPH	170	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-	-	-	-
1															

NOTES:

VULDS: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) fromMay 2020 RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded. Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Brownfields Phase II Environmental Site Assessment

Pigeon Property Westford, Vermont Soil Data Summary Page 4 of 11

							-				
Sample Identification	SB-1	SB-2S	SB-4S	SB-4D	SB-5	SB-6	SB-7	Dup SB-5			
Sample Depth (ft. bg)	0-1.5	0-1.5	0-1.5	9-11	9-10	0-1.5	0-1.5	9-10	EPA Residential	EPA Industrial	VSS Residential
PID Reading (ppm)	0.2	193.0	1.8	39.4	2.7	1.3	0.3	2.7	RSL (mg/kg)	RSL (mg/kg)	(mg/kg)
Sample Date	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	6/5/20			
PCBs, EPA Method 8082 (mg/kg)											
Aroclor - 1016	ND<0.02	4.1	27	NA							
Aroclor - 1221	ND<0.02	0.2	0.83	NA							
Aroclor - 1232	ND<0.02	0.17	0.72	NA							
Aroclor - 1242	ND<0.02	0.23	0.95	NA							
Aroclor - 1248	ND<0.02	0.23	0.94	NA							
Aroclor - 1254	ND<0.02	NA	0.97	0.12							
Aroclor - 1260	ND<0.02	0.24	0.99	NA							
Aroclor - 1262	ND<0.02	NA	NA	NA							
Aroclor - 1268	ND<0.02	NA	NA	NA							
Total PCBs	ND	-	-	0.114							

Toxic Equivalency Calculations Pigeon Property

UST-1			
	Toxicity Equivalents to		
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.041	0.1	0.0041
Chrysene	0.047	0.001	0.000047
Benzo(b)fluoranthene	0.087	0.1	0.0087
Benzo(k)fluoranthene	0.033	0.01	0.00033
Benzo(a)pyrene	0.067	1	0.067
Indeno(1,2,3-cd)pyrene	0.066	0.1	0.0066
Dibenz(a,h)anthracene	0.013	1	0.013
	0.100		

DUP UST-1

	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.041	0.1	0.0041
Chrysene	0.046	0.001	0.000046
Benzo(b)fluoranthene	0.083	0.1	0.0083
Benzo(k)fluoranthene	0.031	0.01	0.00031
Benzo(a)pyrene	0.064	1	0.064
Indeno(1,2,3-cd)pyrene	0.059	0.1	0.0059
Dibenz(a,h)anthracene	0.012	1	0.012
	Total Benz	o(a)pyrene Equivalent =	0.095

SB-1			
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	ND<0.009	0.1	0.00045
Chrysene	ND<0.009	0.001	0.0000045
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045
Benzo(a)pyrene	ND<0.009	1	0.0045
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045
Dibenz(a,h)anthracene	ND<0.009	1	0.0045
	Total Benz	o(a)pyrene Equivalent =	0.010
SB-2S		-	

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.15	0.1	0.015
Chrysene	0.16	0.001	0.00016
Benzo(b)fluoranthene	0.23	0.1	0.023
Benzo(k)fluoranthene	0.075	0.01	0.00075
Benzo(a)pyrene	0.16	1	0.16
Indeno(1,2,3-cd)pyrene	0.097	0.1	0.0097
Dibenz(a,h)anthracene	0.019	1	0.019
	0.228		

SB-2D

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	ND<0.01	0.1	0.0005
Chrysene	ND<0.01	0.001	0.000005
Benzo(b)fluoranthene	ND<0.01	0.1	0.0005
Benzo(k)fluoranthene	ND<0.01	0.01	0.00005
Benzo(a)pyrene	ND<0.01	1	0.005
Indeno(1,2,3-cd)pyrene	ND<0.01	0.1	0.0005
Dibenz(a,h)anthracene	ND<0.01	1	0.005
	Total Benz	0.012	

Toxic Equivalency Calculations Pigeon Property Page 6 of 11

00 10	Concontration	Toxicity Fauinalan	Tovicity Faminalanta to
Contominant	(mg/lyg)	Factor	Pongo(a) numero
	(IIIg/Kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.052	0.1	0.0052
Chrysene	0.058	0.001	0.000058
Benzo(b)fluoranthene	0.084	0.1	0.0084
Benzo(k)fluorantnene	0.027	0.01	0.00027
Benzo(a)pyrene	0.065	1	0.065
Indeno(1,2,3-cd)pyrene	0.048	0.1	0.0048
Dibenz(a,h)anthracene	0.0094	1	0.0094
SB-4D	Total Benzo	o(a)pyrene Equivalent =[0.093
Contaminant	Concentration	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)nyrene
	(III6/ K6)	0.1	0.0022
Characteria	0.033	0.001	0.0033
Chirysene	0.039	0.001	0.000039
Benzo(b)fluoranthene	0.15	0.1	0.015
Benzo(k)fluoranthene	0.051	0.01	0.00051
Benzo(a)pyrene	0.12	1	0.12
Indeno(1,2,3-cd)pyrene	0.090	0.1	0.009
Dibenz(a,h)anthracene	0.019	1	0.019
SB-5	Total Benzo	o(a)pyrene Equivalent =	0.17
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)nvrene
Panga(a)anthragana	ND <0.000	0.1	0.00045
	ND<0.009	0.1	0.00045
	ND<0.009	0.001	0.000045
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045
Benzo(a)pyrene	ND<0.009	1	0.0045
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045
Dibenz(a,h)anthracene	ND<0.009	1	0.0045
ab 4	Total Benzo	o(a)pyrene Equivalent =	0.010
SB-6	Concentration	Toxicity Equivalency	Tovicity Faujyalants to
Contaminant	(mg/kg)	Factor	Renzo(a)nvrene
Pongo(a) anthroacana	(116/116)	0.1	0.14
Characteria	1.4	0.001	0.0014
Chirysene	1.4	0.001	0.0014
	2.2	0.1	0.0076
Benzo(k)Inuorantnene	0.76	0.01	0.0076
Benzo(a)pyrene	1.9	1	1.9
Indeno(1,2,3-cd)pyrene	1.0	0.1	0.1
Dibenz(a,h)anthracene	0.24	1	0.24
\$R-7	Total Benzo	o(a)pyrene Equivalent =	2.6
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.97	0.1	0.097
Chrysene	1.0	0.001	0.001
Benzo(b)fluoranthene	1.5	0.1	0.15
Benzo(k)fluoranthene	0.56	0.01	0.0056
Benzo(a)pyrene	1.3	1	1.3
Indeno(1.2.3-cd)pyrene	0.74	0.1	0.074
Dibenz(a,h)anthracene	0.16	1	0.16
	Total Benzo) (a)pyrene Equivalent =	1.8
Dup SB-5			-
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	ND<0.009	0.1	0.00045
Chrysene	ND<0.009	0.001	0.0000045
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045
Panga(a)numana	ND<0.009	1	0.0045
benzo(a)pyrene			
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	ND<0.009 ND<0.009	0.1	0.00045

Brownfields Phase II Environmental Site Assessment Groundwater Sampling Data Summary

٦

Pigeon Property ute 128. Westford, V 1705 Do

1705 Route 128, Westford, Vermont									
	Page 7 of 11								
MW-2	MW-3	MW-4	MW-5	L					

			Ŭ					
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Vormont
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	Creared
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Groundwater
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	Enforcement
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/1)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
VOCs, EPA Method 8260c (ug/l)								
Dichlorodifluoromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Chloromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Vinyl Chloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.13	2
Bromomethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	5
Chloroethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	31,000	
Trichlorofluoromethane	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Diethyl Ether	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Acetone	ND<1000	12	19	ND<10	50	ND<1000	-	950
1 ,1-Dichloroethene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	7
Methylene chloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	680	5
Carbon disulfide	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
Methyl-t-butyl ether (MTBE)	2,100	ND<1	ND<1	2.8	ND<1	2,100	-	11
trans-1,2-Dichloroethene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
1,1-Dichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	270	70
2,2-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
cis-1,2-Dichloroethene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	70
2-Butanone(MEK)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	511
Bromochloromethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	8
Tetrahydrofuran(THF)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	-
Chloroform	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.41	-
1,1,1-Trichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	200
Carbon tetrachloride	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.24	5
1 ,1-Dichloropropene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
Benzene	14,000.	1.3	ND<1	ND<1	1.8	13,000.	0.92	5
1,2-Dichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
Trichloroethene (TCE)	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	0.82	5
1,2-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
Dibromomethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
Bromodichloromethane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
4-Methyl-2-pentanone(MIBK)	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	-
cis-1,3-Dichloropropene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
Toluene	34,000	1.1	ND<1	ND<1	8.2	34,000	-	1000
trans-1,3-Dichloropropene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
1,1,2-Trichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	5
2-Hexanone	ND<1,000	ND<10	ND<10	ND<10	ND<10	ND<1,000	-	-
Tetrachloroethene (PCE)	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	1.5	5
1,3-Dichloropropane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-

NOTES:

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19 Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded. Dashed Cell - no standard

NR = no reading due to meter capabilty

Brownfields Phase II Environmental Site Assessment Groundwater Sampling Data Summary

Pigeon Property

1705 Route 128, Westford, Vermont Page 8 of 11

			Tugeot	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Vormont
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	Carrier
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Groundwater
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	Enior cement
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/1)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
VOCs, EPA Method 8260c (ug/l)								
Dibromochloromethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2-Dibromoethane(EDB)	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.05
Chlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
1,1,1,2-Tetrachloroethane	ND<100	ND<1	ND<2	ND<2	ND<1	ND<100	-	70
Ethylbenzene	3,900	9.4	ND<1	ND<1	1.0	4,000	2.2	700
mp-Xylene	13,000	18	ND<1	ND<1	3.6	14,000	-	10000**
o-Xylene	6,000	2	ND<1	ND<1	1.3	6,300	-	10000**
Styrene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	100
Bromoform	ND<200	ND<2	ND<2	ND<2	ND<2	ND<200	-	-
IsoPropylbenzene	120	1.5	ND<1	ND<1	ND<1	140	-	-
Bromobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,1,2,2-Tetrachloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2,3-Trichloropropane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.02
n-Propylbenzene	330	4.1	ND<1	ND<1	ND<1	380	-	-
2-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
4-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,3,5-trimethylbenzene	770	7.1	ND<1	ND<1	ND<1	890	330	23*
tert-Butylbenzene	ND<100	2.1	ND<1	ND<1	ND<1	ND<100	-	-
1,2,4-trimethylbenzene	2,900	22	ND<1	ND<1	1.4	3,200	470	23*
sec-Butylbenzene	ND<100	2.3	ND<1	ND<1	ND<1	ND<100	-	-
1,3-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	600
p-Isopropyltoluene	ND<100	1.1	ND<1	ND<1	ND<1	ND<100	-	-
1,4-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	75
1,2-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	600
n-Butylbenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	-
1,2-Dibromo-3-chloropropane	ND<20	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<20	-	0.2
1,2,4-Trichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<100	-	70
Hexachlorobutadiene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	-
Naphthalene	640	5.3	ND<0.5	ND<0.5	0.55	690	4	0.5
1,2,3-Trichlorobenzene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<50	-	0.9
Total Reported VOCs	77,760	89	19	2.8	68	78,700		

NOTES:

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

Brownfields Phase II Environmental Site Assessment

Groundwater Sampling Data Summary

Pigeon Property 1705 Route 128, Westford, Vermont

Page 9 of 11

			_					
Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate		
Depth to Groundwater (Ft)	4.45	6.26	11.59	11.07	10.97	4.45	I-Rule	Verment
pH (standard units)	6.27	6.41	6.69	6.78	7.01	6.27	Groundwater	Creans
Conductivity (umhos)	7,460	520	103.9	1,006	228.00	7,460	Vapor Intrusion	Groundwater
Temperature (celcius)	16.0	12.3	13.1	15.0	14.6	16.0	Standard-	Enforcement
Turbidity (n.t.u.)	138	173	113	910	NR	138	Resident (ug/l)	Standard (ug/1)
Sample Date	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20	6/17/20		
RCRA Metals, EPA Method 6020a (mg/	l)							
Total Arsenic	0.017	0.0057		0.0031		0.017	-	0.010
Total Barium	1.6	0.71		0.46		1.6	-	2
Total Cadmium	0.0012	0.0019		0.0012		0.0012	-	0.005
Total Chromium	0.022	ND<0.001	Insufficient	0.0019	Insufficient	0.024	-	0.100
Total Lead	0.12	0.0011	Water	0.0057	Water	0.12	-	0.015
Total Mercury	ND<0.0001	ND<0.0001		ND<0.0001		ND<0.0001	2.0	0.002
Total Selenium	0.0047	ND<0.001		ND<0.001		0.0034	-	0.05
Total Sliver	ND<0.001	ND<0.001		ND<0.001		ND<0.001	-	-
NOTEC								

NOTES: Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19 Reported results or reporting limits equal to or in excess of regulatory criteria are shaded. Dashed Cell - no standard

Brownfields Phase II Environmental Site Assessment Drinking Water Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 10 of 11

Sample	DWS-1	
Sample Date	6/17/20	MCL
VOCs, EPA Method 524.2 (ug/L)		
Dichlorodifluoromethane	ND<0.5	-
Chloromethane	ND<0.5	-
Vinyl Chloride	ND<0.5	2.
Bromomethane	ND<0.5	-
Chloroethane	ND<0.5	-
Trichlorofluoromethane	ND<0.5	-
Diethyl Ether	ND<5	-
Acetone	ND<10	-
1 ,1-Dichloroethene	ND<0.5	7
tert-Butyl Alcohol (TBA)	ND<30	
Methylene chloride	ND<0.5	5
Carbon disulfide	ND<2	-
MTBE	ND<0.5	-
trans-1,2-Dichloroethene	ND<0.5	100
1,1-Dichloroethane	ND<0.5	-
2,2-Dichloropropane	ND<0.5	-
cis-1,2-Dichloroethene	ND<0.5	70
2-Butanone(MEK)	ND<5	-
Bromochloromethane	ND<0.5	-
Tetrahydrofuran(THF)	ND<5	-
Chloroform	ND<0.5	80*
1,1,1-Trichloroethane	ND<0.5	200
Carbon tetrachloride	ND<0.5	5
1 ,1-Dichloropropene	ND<0.5	-
Benzene	ND<0.5	5
1,2-Dichloroethane	ND<0.5	5
Trichloroethene (TCE)	ND<0.5	5
1,2-Dichloropropane	ND<0.5	5
Dibromomethane	ND<0.5	-
Bromodichloromethane	ND<0.5	80*
4-Methyl-2-pentanone(MIBK)	ND<5	-
cis-1,3-Dichloropropene	ND<0.3	-
Toluene	ND<0.5	1000
trans-1,3-Dichloropropene	ND<0.3	-
1,1,2-Trichloroethane	ND<0.5	5
2-Hexanone	ND<5	-
Tetrachloroethene (PCE)	ND<0.05	5
1,3-Dichloropropane	ND<0.05	-
Dibromochloromethane	ND<0.05	80*

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold Reporting limits and reported concentrations equal to or above the MCL are shaded

* means the indicated enforcement standard is for total trihalomethanes

*** means the indicated enforcement standard is for total xylenes
Brownfields Phase II Environmental Site Assessment Drinking Water Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 11 of 11

Sample	DWS-1	
Sample Date	6/17/20	MCL
VOCs, EPA Method 524.2 (ug/L) (continued	l)	
1,2-Dibromoethane(EDB)	ND<0.05	0.05
Chlorobenzene	ND<0.05	100
1,1,1,2-Tetrachloroethane	ND<0.5	-
Ethylbenzene	ND<0.5	700
mp-Xylene	ND<0.5	10000***
o-Xylene	ND<0.5	10000***
Styrene	ND<0.5	100
Bromoform	ND<0.5	80*
IsoPropylbenzene	ND<0.5	-
Bromobenzene	ND<0.5	-
1,1,2,2-Tetrachloroethane	ND<0.5	-
1,2,3-Trichloropropane	ND<0.5	-
n-Propylbenzene	ND<0.5	-
2-Chlorotoluene	ND<0.5	-
4-Chlorotoluene	ND<0.5	-
1,3,5-trimethylbenzene	ND<0.5	-
tert-Butylbenzene	ND<0.5	-
1,2,4-trimethylbenzene	ND<0.5	-
sec-Butylbenzene	ND<0.5	-
1,3-Dichlorobenzene	ND<0.5	-
p-Isopropyltoluene	ND<0.5	-
1,4-Dichlorobenzene	ND<0.5	75
1,2-Dichlorobenzene	ND<0.5	600.
n-Butylbenzene	ND<0.5	-
1,2-Dibromo-3-chloropropane	ND<0.5	0.2
1,2,4-Trichlorobenzene	ND<0.5	70
Hexachlorobutadiene	ND<0.5	-
Naphthalene	ND<0.5	-
1,2,3-Trichlorobenzene	ND<0.5	-
Total Reported VOCs	ND	-

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold Reporting limits and reported concentrations equal to or above the MCL are shaded

* means the indicated enforcement standard is for total trihalomethanes

*** means the indicated enforcement standard is for total xylenes

Brownfields Supplemental Site Investigation Report Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863, EPA RFA 19093

February 12, 2021

Prepared for:

Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

> Co-Operative Insurance Companies 292 Colonial Drive Middlebury, VT 05753

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 <u>www.leenv.net</u> LEE #19-138

Contents

1.0	EXECUTIVE SUMMARY	3
2.0	SITE INFORMATION	6
3.0	CURRENT USE OF THE SITE	6
4.0	CURRENT ADJOINING PROPERTY USES	6
5.0	SITE DESCRIPTION	6
6.0	LATITUDE/LONGITUDE	7
7.0	PROPERTY HISTORY	7
8.0	SITE CONTAMINANT BACKGROUND	9
Α.	Release Date and Description	. 9
В.	Release Report Date	10
C.	Release Response Actions	10
D.	Previous Environmental Documents	10
E.	Copy of Previous Environmental Documents	11
F.	List of Governmental Records Reviewed	11
9.0	UPDATED CONCEPTUAL SITE MODEL	11
Α.	Updated Site Conceptual Model	11
В.	Potential Contamination Sources	13
C.	Potential Receptors	13
D.	Utility Corridors	14
E.	Water Bodies and Wetlands	14
F.	Water Supplies	14
G.	Site Users	14
10.0	WORK PLAN DEVIATIONS	14
11.0	SAMPLE COLLECTION DOCUMENTATION	15
12.0	CONTAMINATED MEDIA CHARACTERIZATION	16
Α.	Geophysical Investigation	16
В.	Soil	16
C.	Groundwater	17
D.	Supply Well Sampling	19
E.	Soil Gas Sampling	19
F.	Other Media	21
G.	Site-Specific Values	21
13.0	SITE-SPECIFIC RISK ASSESSMENT	21
14.0	MAPS	21
15.0	DISCUSSION	21
16.0	DATA PRESENTATION	23
17.0	QA/QC SAMPLE RESULTS	23
18.0	INVESTIGATION DERIVED WASTE	23
19.0	CONCLUSIONS AND RECOMMENDATIONS	23
20.0	SIGNATURE AND CERTIFICATION	25
21.0	MAPS AND APPENDICES	26

1.0 EXECUTIVE SUMMARY

LE Environmental LLC (LEE) conducted a Brownfields Supplement Site Investigation (SSI) at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The SSI was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated November 12, 2020, approved November 16, 2020, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC) and Co-Operative Insurance Companies. A portion of this work is supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

The Site includes a vacant residence and a former bus repair garage and gasoline filling station on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858, and historic Site use has included residential, a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property, and a tannery was noted on the adjoining property to the west in 1869.

The Site is located on the north side of Route 128. The area immediately surrounding the Site is the town center of Westford, with closely spaced residential homes, a municipal office building, a public library, and a town common. The DEC indicates that the Site is in a Vermont Department of Environmental Conservation (DEC) designated "urban background" zone for soil contamination. The topography of the Site is fairly flat on its south side, near Route 128, and then slopes downward to the north, toward the Browns River. There is also a ravine on the eastern side of the Site, which contains an outlet drainage pipe for the town common's stormwater system. No odors or sheens have been noted on the water exiting the outlet pipe. Portions of the northern and eastern ends of the property appear to have wetland vegetation.

Three structures are currently present on the property. The residence is a twostory, wood framed structure with a full basement. The garage is a single-story, wood framed structure, with a slab on-grade foundation. The third building is a small wood framed shed.

A Phase II Environmental Site Assessment (ESA) was conducted in 2020 to investigate Recognized Environmental Conditions (RECs) identified in a 2019 Phase

Brownfields Supplemental Site Investigation Report Pigeon Property, 1705 Route 128, Westford, Vermont

I ESA. The ESA concluded the abandoned gasoline underground storage tank (UST) had failed and soils and groundwater in the vicinity were impacted with Volatile Organic Compounds (VOCs) above regulatory standards. A pipe with unknown purpose was also noted on the southern wall of the UST excavation. The excavation could not be extended in this direction due to the presence of Route 128 and special permitting, traffic control and engineering would be required to dig in this area. The limits of the dissolved-phase contaminant plume were not defined during the Phase II ESA.

Shallow and deep soils were found to be impacted with petroleum contamination in the southern portion of the property, near the former UST location, and in the parking area to the east. Shallow soils are impacted with Polycyclic Aromatic Hydrocarbons (PAHs) in the area to the north and northeast of the garage. The limits of the PAH contamination were not defined during the Phase II ESA. LEE recommended additional delineation of soil and groundwater contamination should be completed.

The SSI included a geophysical investigation in the roadway near the suspect pipe noted during the UST removal, an additional round of groundwater sampling of the existing groundwater monitoring wells followed by installation of additional groundwater monitoring wells and a subsequent round of groundwater sampling, a soil boring investigation of shallow soil PAH contamination, drinking water sampling, and a soil vapor investigation.

A geophysical investigation was conducted to investigate the area around the suspect pipe noted on the southern edge of the previous UST excavation on November 24, 2020. No evidence of a pipe or additional USTs beneath Route 128 was noted during the geophysical investigation.

A confirmatory round of groundwater sampling was performed on December 3, 2020. The depth to water ranged from 2.86' below grade (bg) at MW-1 to 8.62' bg at MW-5. Concentrations of benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes, and naphthalene in excess of the Vermont Groundwater Enforcement Standards (VGES) were reported in the vicinity of the former UST location (MW-1). Ethylbenzene was reported in MW-2 below the VGES. No contaminant concentrations were reported above laboratory detection limits in MW-3, MW-4, or MW-5. A supply well sample was also obtained on December 3, 2020, and no VOCs were reported in the water supply sample.

Thirteen soil borings were advanced at the Site on December 21, 2020. Ten soil samples and a duplicate were obtained during drilling. Three additional groundwater monitoring wells, four soil gas wells, and two vapor pins were installed.

Brownfields Supplemental Site Investigation Report Pigeon Property, 1705 Route 128, Westford, Vermont

PAH toxicity equivalency quotient (TEQ) concentrations in excess of the DEC's Statewide Urban Background concentration were identified in five of the ten shallow soil samples obtained in this SSI (SB-102, SB-103, SB-104, SB-105, and SB-106). The northwestern, western, southern, and eastern limits of the PAH-impacted shallow soil were identified by the SSI sampling. However, the northern-most soil shallow soil samples contained PAH TEQ above the DEC's Statewide Urban Background concentration, indicating the extent of the contamination continues to the north some distance. The area of soils impacted is likely correlated to the historic storage of buses, auto parts, and other machinery in this area.

An additional round of groundwater sampling, including the three newly installed monitoring wells, was performed on January 7, 2021. The depth to water ranged from 2.09' bg at MW-7 to 10.27' bg at MW-5. Concentrations of MTBE, benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes, and naphthalene in excess of the VGES were reported in MW-1. A naphthalene concentration in excess of the VGES was reported in MW-8. Concentrations of ethylbenzene and 1,3,5-trimethylbenzene below the VGES were reported in MW-2.

The northern, western, and southern portions of the groundwater contaminant plume have been defined. The eastern edge of the plume is not fully defined, but it likely terminates in the vicinity of MW-8 based on the fairly low concentration of naphthalene reported there.

Three soil gas, two sub-slab soil gas, and one outdoor ambient air sample were obtained on January 2, 2021. The soil gas samples were analyzed for the presence of VOCs via EPA Method TO-15.

Several VOCs were reported in the soil gas samples including: benzene, carbon tetrachloride, ethylbenzene, methylene chloride, tetrachloroethene (PCE), acetone, ethanol, isopropanol, tetrahydrofuran, toluene, Freon 11, and xylenes. None of the reported concentrations exceeded DEC's residential vapor intrusion standards.

LEE has developed the following recommendations during this SSI:

- Groundwater monitoring should continue to be performed on an annual basis to track the groundwater contaminant plume at the Site.
- An evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) should be prepared per the requirements of Subchapter 6 of the DEC's I-Rule.

Liquid Level Monitoring Data Brownfields Phase II ESA Pigeon Property 1705 Route 128 Westford, Vermont

Measurement Date: December 3, 2020

	Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW-1	99.22	_	2.86	-	-	-	-	96.36
MW-2	99.74	-	5.81	-	-	-	-	93.93
MW-3	99.03	-	4.70	-	-	-	-	94.33
MW-4	98.68	-	5.09	-	-	-	-	93.59
MW-5	81.18	_	8.62	-	-	-	-	72.56

Notes:

All Values Reported in Feet btoc - Below Top of Casing

Elevation data relative to 100' at SE corner of garage

Brownfields Phase II ESA Pigeon Property 1705 Route 128 Westford, Vermont

Measurement Date: Jan	uary 7, 20	21
-----------------------	------------	----

	Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW-1	99.22	-	3.57	-	-	-	-	95.65
MW-2	99.74	-	6.19	-	-	-	-	93.55
MW-3	99.03	-	9.37	-	-	-	-	89.66
MW-4	98.68	-	7.25	-	-	-	-	91.43
MW-5	81.18	-	10.27	-	-	-	-	70.91
MW-6	99.99	-	3.80	-	-	-	-	96.19
MW-7	100.30	-	2.09	-	-	-	-	98.21
MW-8	98.37	-	6.31	-	-	-	-	92.06

Notes:

All Values Reported in Feet

btoc - Below Top of Casing

Elevation data relative to 100' at SE corner of garage

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary **Pigeon Property** 1705 Route 128, Westford, Vermont Page 1 of 6

Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	Duplicate						
Depth to Groundwater (Ft)	2.86	5.81	4.70	5.09	8.62	5.81	I-Rule	Vermont				
pH (standard units)	7.24	6.78	6.87	6.68	6.52	6.78	Groundwater	Groundwater				
Conductivity (umhos)	2,390	473	1,242	866	416	473	Vapor Intrusion	Enforcement				
Temperature (celcius)	8.2	10.3	9.6	9.4	8.8	10.3	Standard-	Standard				
Turbidity (n.t.u.)	711	749	13.4	106	550	749	Resident (ug/l)	(ug/l)				
Sample Date	12/3/20	12/3/20	12/3/20	12/3/20	12/3/20	12/3/20						
VOCs, EPA Method 8260c VT Petroleum List (ug/l)												
Methyl-t-butyl ether (MTBE)	ND<200	ND<1	ND<1	ND<1	ND<1	ND<1	-	11				
Benzene	4,900.	ND<1	ND<1	ND<1	ND<1	ND<1	0.92	5				
1,2-Dichloroethane	ND<200	ND<1	ND<1	ND<1	ND<1	ND<1	-	5				
Toluene	15,000	ND<1	ND<1	ND<1	ND<1	ND<1	-	1000				
1,2-Dibromoethane(EDB)	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.05				
Ethylbenzene	2,500	1.5	ND<1	ND<1	ND<1	1.4	2.2	700				
mp-Xylene	12,000	ND<1	ND<1	ND<1	ND<1	ND<1	-	10000*				
o-Xylene	5,700	ND<1	ND<1	ND<1	ND<1	ND<1	-	10000*				
1,3,5-trimethylbenzene	880	ND<1	ND<1	ND<1	ND<1	ND<1	330	23				
1,2,4-trimethylbenzene	3,300	ND<1	ND<1	ND<1	ND<1	ND<1	470	23				
1,2,3-trimethylbenzene	950	ND<1	ND<1	ND<1	ND<1	ND<1	790	23				
Naphthalene	710	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4	0.5				
Total Reported VOCs	45,940	1.5	ND	ND	ND	1.4						

NOTES:

Ground water Enforcement Standard from Vermont Groundwater Protection Rule 7/19 Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded. Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary **Pigeon Property** 1705 Route 128, Westford, Vermont Page 2 of 6

Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	Duplicate		
Depth to Groundwater (Ft)	3.57	6.19	9.37	7.25	10.27	3.80	2.09	6.31	6.19	I-Rule	Vermont
pH (standard units)	7.11	6.75	6.95	6.55	6.84	6.73	7.11	6.82	6.75	Groundwater	Groundwater
Conductivity (umhos)	3,430	497	1,502	741	809	812	1,268	4,510	497	Vapor Intrusion	Enforcement
Temperature (celcius)	5.6	7.3	8.2	8.7	6.6	6.3	6.5	6.9	7.3	Standard-	Standard (ug/l)
Turbidity (n.t.u.)	635	814	119	81.9	604	853	NR	520	814	Resident (ug/l)	Sumunu (ug/1)
Sample Date	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21		
VOCs, EPA Method 8260c (ug/l)											
Dichlorodifluoromethane	ND<200	ND<2	-	-							
Chloromethane	ND<200	ND<2	-	-							
Vinyl Chloride	ND<100	ND<1	0.13	2							
Bromomethane	ND<200	ND<2	-	5							
Chloroethane	ND<200	ND<2	31,000								
Trichlorofluoromethane	ND<200	ND<2	-	-							
Diethyl Ether	ND<200	ND<2	-	-							
Acetone	ND<1000	ND<10	-	950							
1,1-Dichloroethene	ND<50	ND<0.5	-	7							
Methylene chloride	ND<100	ND<1	680	5							
Carbon disulfide	ND<200	ND<2	-	-							
Methyl-t-butyl ether (MTBE)	290	ND<1	-	11							
trans-1.2-Dichloroethene	ND<100	ND<1	-	100							
1.1-Dichloroethane	ND<100	ND<1	270	70							
2.2-Dichloropropane	ND<100	ND<1	-	-							
cis-1.2-Dichloroethene	ND<100	ND<1	-	70							
2-Butanone(MEK)	ND<1 000	ND<10		511							
Bromochloromethane	ND<100	ND<1		8							
Tetrahydrofuran(THF)	ND<1000	ND<10		-							
Chloroform	ND<100	ND<1	0.41								
1.1.1-Trichloroethane	ND<100	ND<1	-	200							
Carbon tetrachloride	ND<100	ND<1	0.24	5							
1 1-Dichloropropene	ND<100	ND<1	-	-							
Benzene	5,900	ND<1	0.92	5							
1.2-Dichloroethane	ND<100	ND<1	-	5							
Trichloroethene (TCE)	ND<100	ND<1	0.82	5							
1.2-Dichloropropane	ND<100	ND<1		5							
Dibromomethane	ND<100	ND<1		-							
Bromodichloromethane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<05	ND<0.5	ND<0.5	ND<05	ND<05		
4-Methyl-2-pentanone(MIBK)	ND<1000	ND<10									
cis-1 3-Dichloropropene	ND<50	ND<0.5									
Toluene	19 000	ND<1		1000							
trans-1 3-Dichloronronene	ND<50	ND<05	ND<05	ND<05	ND<05	ND<05	ND<0.5	ND<05	ND<05		- 1000
1 1 2-Trichloroethane	ND<100	ND<1		5							
2-Hevanone	ND<1.000	ND<10									
Tetrachloroethene (PCF)	ND<100	ND<1	15	5							
1.3-Dichloronronane	ND<100	ND<1	- 1.5								
NOTES.	ND 100	ND 11	ND 11	ND VI	ND 11	ND 11	ND VI	ND 11	ND VI		
Groundwater Enforcement Standard from Groundwater Vapor Intrusion Standards Reported results or reporting limits equal Dashed Cell - no standard NR = no reading due to meter capability	Source and the set of										

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary **Pigeon Property** 1705 Route 128, Westford, Vermont Page 3 of 6

Groundwater Sample	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	Duplicate		
Depth to Groundwater (Ft)	3.57	6.19	9.37	7.25	10.27	3.80	2.09	6.31	6.19	I-Rule	Vermont
pH (standard units)	7.11	6.75	6.95	6.55	6.84	6.73	7.11	6.82	6.75	Groundwater	Groundwater
Conductivity (umhos)	3,430	497	1,502	741	809	812	1,268	4,510	497	Vapor Intrusion	Enforcement
Temperature (celcius)	5.6	7.3	8.2	8.7	6.6	6.3	6.5	6.9	7.3	Standard-	Standard (ug/l)
Turbidity (n.t.u.)	635	814	119	81.9	604	853	NR	520	814	Resident (ug/l)	C 0, 5
Sample Date	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21	1/7/21		
VOCs, EPA Method 8260c (ug/l)											
Dibromochloromethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,2-Dibromoethane(EDB)	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.05
Chlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	100
1,1,1,2-Tetrachloroethane	ND<100	ND<1	ND<2	ND<2	ND<2	ND<1	ND<2	ND<2	ND<1	-	70
Ethylbenzene	2,900	2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	2.1	2.2	700
mp-Xylene	15,000	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	10000**
o-Xylene	6,800	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	10000**
Styrene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	100
Bromoform	ND<200	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2	ND<2	-	-
IsoPropylbenzene	120	ND<1	ND<1	ND<1	ND<1	1.1	ND<1	ND<1	ND<1	-	-
Bromobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,1,2,2-Tetrachloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,2,3-Trichloropropane	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.02
n-Propylbenzene	350	ND<1	ND<1	ND<1	ND<1	2.3	ND<1	ND<1	ND<1	-	-
2-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
4-Chlorotoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,3,5-trimethylbenzene	1,000	1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	1.1	330	23*
tert-Butylbenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	1.2	-	-
1,2,4-trimethylbenzene	4,300	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	470	23*
sec-Butylbenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	1.2	-	-
1,3-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	600
1,2,3-Trimethylenzene	1,100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	790	23*
p-Isopropyltoluene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,4-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	75
1,2-Dichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1		600
n-Butylbenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	-
1,2-Dibromo-3-chloropropane	ND<20	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.2	-	0.2
1,2,4-Trichlorobenzene	ND<100	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	-	70
Hexachlorobutadiene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-
Naphthalene	690	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2.9	ND<0.5	4	0.5
1,2,3-Trichlorobenzene	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.9
Total Reported VOCs	57,450	3	ND	ND	ND	3.4	ND	2.9	5.6		
NOTES:	-										
Groundwater Enforcement Standard f	rom Vermont Gro	undwater Pro	tection Rule 7	/19							
Groundwater Vapor Intrusion Standar	rds from Vermont	I-Rule 7/19									
Reported results or reporting limits eq	ual to or in excess	, of regulatory	criteria are sl	haded.							
Dashed Cell - no standard											
* means total trimethylbenzenes ** me	ans total xylenes										
NR = no reading due to meter capabilt	v										

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 4 of 6

MW-1

Depth to Groundwater (Ft) pH (standard units) Conductivity (umhos) Temperature (celcius) Turbidity (n.t.u.) Sample Date	4.45 6.27 7,460 16.0 138 6/17/20	2.86 7.24 2,390 8.2 711 12/3/20	3.57 7.11 3,430 5.6 635 1/7/21	I-Rule Groundwater Vapor Intrusion Standard- Resident (ug/l)	Vermont Groundwater Enforcement Standard (ug/l)
Mathed the total athen (MTDE)	2 1 0 0	ND -200	200		11
Bengene	2,100	ND<200	290 5 000	-	11
belizelle	14,000.	4,900.	5,900	0.92	5
1,2-Dichloroethane	ND<100	ND<200	ND<100	-	5
Toluene	34,000	15,000	19,000	-	1000
1,2-Dibromoethane(EDB)	ND<50	ND<100	ND<50	-	0.05
Ethylbenzene	3,900	2,500	2,900	2.2	700
mp-Xylene	13,000	12,000	15,000	-	10000**
o-Xylene	6,000	5,700	6,800	-	10000**
1,3,5-trimethylbenzene	770	880	1,000	330	23*
1,2,4-trimethylbenzene	2,900	3,300	4,300	470	23*
1,2,3-trimethylbenzene	NT	950	1,100	790	23*
Naphthalene	640	710	690	4	0.5
Total Reported VOCs	77,310	45,940	56,980		

MW-2

		1.111 2			
Depth to Groundwater (Ft)	6.26	5.81	6.19	I Dulo	
pH (standard units)	6.41	6.78	6.75	I-Kule Crown dwatar	Vermont
Conductivity (umhos)	520	473	497	Groundwater Vener Intrusion	Groundwater
Temperature (celcius)	12.3	10.3	7.3	vapor intrusion	Enforcement
Turbidity (n.t.u.)	173	749	814	Standard-	Standard (ug/l)
Sample Date	6/17/20	12/3/20	1/7/21	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)					
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	ND<1	-	11
Benzene	1.3	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<1	ND<1	ND<1	-	5
Toluene	1.1	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	9.4	1.5	2	2.2	700
mp-Xylene	18	ND<1	ND<1	-	10000**
o-Xylene	2	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	7.1	ND<1	1	330	23*
1,2,4-trimethylbenzene	22	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	NT	ND<1	ND<1	790	23*
Naphthalene	5.3	ND<0.5	ND<0.5	4	0.5
Total Reported VOCs	66	1.5	3		

NOTES:

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 5 of 6

MW-3

Depth to Groundwater (Ft)	11.59	4.70	9.37	I-Rule	
pH (standard units)	6.69	6.87	6.95	Groundwater	Vermont Groundwater
Conductivity (umhos)	103.9	1,242	1,502	Vanor Intrusion	
Temperature (celcius)	13.1	9.6	8.2	Standard	Enforcement
Turbidity (n.t.u.)	113	13.4	119	Desident (ug /l)	Standard (ug/l)
Sample Date	6/17/20	12/3/20	1/7/21	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)					
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	ND<1	-	11
Benzene	ND<1	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<1	ND<1	ND<1	-	5
Toluene	ND<1	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	ND<1	ND<1	ND<1	2.2	700
mp-Xylene	ND<1	ND<1	ND<1	-	10000**
o-Xylene	ND<1	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	ND<1	ND<1	ND<1	330	23*
1,2,4-trimethylbenzene	ND<1	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	NT	ND<1	ND<1		
Naphthalene	ND<0.5	ND<0.5	ND<0.5	4	0.5
Total Reported VOCs	ND	ND	ND		

MW-4

		1.1.1.1			
Depth to Groundwater (Ft)	11.07	5.09	7.25	I Dulo	
pH (standard units)	6.78	6.68	6.55	I-Kule Croundwater	Vermont
Conductivity (umhos)	1,006	866	741	Vapor Intrusion	Groundwater
Temperature (celcius)	15.0	9.4	8.7	Standard	Enforcement
Turbidity (n.t.u.)	910	106	81.9	Bosidont (ug/l)	Standard (ug/l)
Sample Date	6/17/20	12/3/20	1/7/21	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)					
Methyl-t-butyl ether (MTBE)	2.8	ND<1	ND<1	-	11
Benzene	ND<1	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<1	ND<1	ND<1	-	5
Toluene	ND<1	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	ND<1	ND<1	ND<1	2.2	700
mp-Xylene	ND<1	ND<1	ND<1	-	10000**
o-Xylene	ND<1	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	ND<1	ND<1	ND<1	330	23*
1,2,4-trimethylbenzene	ND<1	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	NT	ND<1	ND<1		
Naphthalene	ND<0.5	ND<0.5	ND<0.5	4	0.5
Total Reported VOCs	2.8	ND	ND		

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 6 of 6

MW-5

Depth to Groundwater (Ft) pH (standard units) Conductivity (umhos) Temperature (celcius) Turbidity (n.t.u.) Sample Date	10.97 7.01 228.00 14.6 NR 6/17/20	8.62 6.52 416 8.8 550 12/3/20	10.27 6.84 809 6.6 604 1/7/21	l-Rule Groundwater Vapor Intrusion Standard- Resident (ug/l)	Vermont Groundwater Enforcement Standard (ug/l)	
VOCs, EPA Method 8260c (ug/l)						
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	ND<1	-	11	
Benzene	1.8	ND<1	ND<1	0.92	5	
1,2-Dichloroethane	ND<1	ND<1	ND<1	-	5	
Toluene	8.2	ND<1	ND<1	-	1000	
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	ND<0.5	-	0.05	
Ethylbenzene	1.0	ND<1	ND<1	2.2	700	
mp-Xylene	3.6	ND<1	ND<1	-	10000**	
o-Xylene	1.3	ND<1	ND<1	-	10000**	
1,3,5-trimethylbenzene	ND<1	ND<1	ND<1	330	23*	
1,2,4-trimethylbenzene	1.4	ND<1	ND<1	470	23*	
1,2,3-trimethylbenzene	NT	ND<1	ND<1			
Naphthalene	0.55	ND<0.5	ND<0.5	4	0.5	
Total Reported VOCs	18	ND	ND			

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

Brownfields Supplemental Site Assessment Drinking Water Sampling Data Summary

Pigeon Property 1705 Route 128, Westford, Vermont

Page 1 of 2

Sample	DWS-1	DWS	
Sample Date	6/17/20	12/3/20	MCL
VOCs, EPA Method 524.2 (ug/L))		
Dichlorodifluoromethane	ND<0.5	ND<0.5	-
Chloromethane	ND<0.5	ND<0.5	-
Vinyl Chloride	ND<0.5	ND<0.5	2.
Bromomethane	ND<0.5	ND<0.5	-
Chloroethane	ND<0.5	ND<0.5	-
Trichlorofluoromethane	ND<0.5	ND<0.5	-
Diethyl Ether	ND<5	ND<5	-
Acetone	ND<10	ND<10	-
1,1-Dichloroethene	ND<0.5	ND<0.5	7
tert-Butyl Alcohol (TBA)	ND<30	ND<30	-
Methylene chloride	ND<0.5	ND<0.5	5
Carbon disulfide	ND<2	ND<2	-
MTBE	ND<0.5	ND<0.5	-
trans-1,2-Dichloroethene	ND<0.5	ND<0.5	100
1,1-Dichloroethane	ND<0.5	ND<0.5	-
2,2-Dichloropropane	ND<0.5	ND<0.5	-
cis-1,2-Dichloroethene	ND<0.5	ND<0.5	70
2-Butanone(MEK)	ND<5	ND<5	-
Bromochloromethane	ND<0.5	ND<0.5	-
Tetrahydrofuran(THF)	ND<5	ND<5	-
Chloroform	ND<0.5	ND<0.5	80*
1,1,1-Trichloroethane	ND<0.5	ND<0.5	200
Carbon tetrachloride	ND<0.5	ND<0.5	5
1,1-Dichloropropene	ND<0.5	ND<0.5	-
Benzene	ND<0.5	ND<0.5	5
1,2-Dichloroethane	ND<0.5	ND<0.5	5
Trichloroethene (TCE)	ND<0.5	ND<0.5	5
1,2-Dichloropropane	ND<0.5	ND<0.5	5
Dibromomethane	ND<0.5	ND<0.5	-
Bromodichloromethane	ND<0.5	ND<0.5	80*
4-Methyl-2-pentanone(MIBK)	ND<5	ND<5	-
cis-1,3-Dichloropropene	ND<0.3	ND<0.3	-
Toluene	ND<0.5	ND<0.5	1000
trans-1,3-Dichloropropene	ND<0.3	ND<0.3	-
1,1,2-Trichloroethane	ND<0.5	ND<0.5	5
2-Hexanone	ND<5	ND<5	-
Tetrachloroethene (PCE)	ND<0.05	ND<0.05	5
1,3-Dichloropropane	ND<0.05	ND<0.05	-
Dibromochloromethane	ND<0.05	ND<0.05	80*

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold Reporting limits and reported concentrations equal to or above the MCL are shaded

* means the indicated enforcement standard is for total trihalomethanes

means the indicated enforcement standard is for total trinatomethan

*** means the indicated enforcement standard is for total xylenes

Brownfields Supplemental Site Assessment Drinking Water Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont

Page 2 of 2

Sample	DWS-1	DWS	
Sample Date	6/17/20	12/3/20	MCL
VOCs, EPA Method 524.2 (ug/L)	(continued)		
1,2-Dibromoethane(EDB)	ND<0.05	ND<0.05	0.05
Chlorobenzene	ND<0.05	ND<0.05	100
1,1,1,2-Tetrachloroethane	ND<0.5	ND<0.5	-
Ethylbenzene	ND<0.5	ND<0.5	700
mp-Xylene	ND<0.5	ND<0.5	10000***
o-Xylene	ND<0.5	ND<0.5	10000***
Styrene	ND<0.5	ND<0.5	100
Bromoform	ND<0.5	ND<0.5	80*
IsoPropylbenzene	ND<0.5	ND<0.5	-
Bromobenzene	ND<0.5	ND<0.5	-
1,1,2,2-Tetrachloroethane	ND<0.5	ND<0.5	-
1,2,3-Trichloropropane	ND<0.5	ND<0.5	-
n-Propylbenzene	ND<0.5	ND<0.5	-
2-Chlorotoluene	ND<0.5	ND<0.5	-
4-Chlorotoluene	ND<0.5	ND<0.5	-
1,3,5-trimethylbenzene	ND<0.5	ND<0.5	-
tert-Butylbenzene	ND<0.5	ND<0.5	-
1,2,4-trimethylbenzene	ND<0.5	ND<0.5	-
sec-Butylbenzene	ND<0.5	ND<0.5	-
1,3-Dichlorobenzene	ND<0.5	ND<0.5	-
p-Isopropyltoluene	ND<0.5	ND<0.5	-
1,4-Dichlorobenzene	ND<0.5	ND<0.5	75
1,2-Dichlorobenzene	ND<0.5	ND<0.5	600.
n-Butylbenzene	ND<0.5	ND<0.5	-
1,2-Dibromo-3-chloropropane	ND<0.5	ND<0.5	0.2
1,2,4-Trichlorobenzene	ND<0.5	ND<0.5	70
Hexachlorobutadiene	ND<0.5	ND<0.5	-
Naphthalene	ND<0.5	ND<0.5	-
1,2,3-Trichlorobenzene	ND<0.5	ND<0.5	-
Total Reported VOCs	ND	ND	-

NOTES:

Drinking Water Standards - Maximum Contaminant Levels (MCLs) published in the Water Supply Rule, 3/2020 ND<xx = Not Detected< Detection Limit; Results reported above detection limits are indicated in bold

Reporting limits and reported concentrations equal to or above the MCL are shaded % $\label{eq:main_eq} \left[\mathcal{M}_{\mathrm{eq}}^{\mathrm{constration}} \right] = \left[\mathcal{M}_{\mathrm{eq}}^{\mathrm{constration}} \right] \left[\mathcal{M}_{\mathrm{eq}}^{\mathrm{constration}} \right] = \left[\mathcal{M}_{\mathrm{eq}}^{\mathrm{constration}} \right] \left[\mathcal{M}_{\mathrm{eq}}^{\mathrm{constration}} \right]$

* means the indicated enforcement standard is for total trihalomethanes

*** means the indicated enforcement standard is for total xylenes

Brownfields Supplemental Site Assessment Pigeon Property Westford, Vermont Soil Data Summary

Page 1 of 3

						1 a	501015								
Sample Identification Sample Depth (ft. bg)	SB-101 0-1.5	SB-102 0-1.5	SB-103 0-1.5	SB-104 0-1.5	SB-105 0-1.5	SB-106 0-1.5	SB-107 0-1.5	SB-108 0-1.5	SB-109 0-1.5	SB-110 0-1.5	Dup SB-107 0-1.5	EPA	EPA Industrial	VSS	VSS Non-
PID Reading (ppm)	0.1	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	Residential RSL (mg/kg)	RSL (mg/kg)	Residential (mg/kg)	Residential (mg/kg)
Sample Date	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20	12/21/20				
PAH EPA Method 8270D (mg/kg)															-
Naphthalene	ND<0.008	0.010	0.046	0.22	ND<0.02	0.10	0.0098	ND<0.008	ND<0.008	ND<0.008	ND<0.008	-	-	2.7	16
2-Methylnaphthalene	ND<0.008	ND<0.008	0.017	0.078	ND<0.02	0.039	ND<0.008	ND<0.008	ND<0.008	ND<0.008	ND<0.008	240	3,000	-	-
1-Methylnaphthalene	ND<0.008	ND<0.008	0.013	0.073	ND<0.02	0.031	ND<0.008	ND<0.008	ND<0.008	ND<0.008	ND<0.008	18	73	-	-
Acenaphthylene	0.022	0.10	0.47	2.1	0.17	1.3	0.044	0.038	0.016	0.021	0.017	-	-	-	-
Acenaphthene	ND<0.008	ND<0.008	0.021	0.17	ND<0.02	0.083	ND<0.008	ND<0.008	ND<0.008	ND<0.008	ND<0.008	3,600	45,000	-	-
Fluorene	0.011	0.020	0.091	0.55	0.042	0.30	0.027	ND<0.008	ND<0.008	ND<0.008	ND<0.008	-	-	2,301	26,371
Phenanthrene	0.12	0.19	0.72	4.2	0.52	2.2	0.23	0.036	0.013	0.021	0.022	-	-	-	-
Anthracene	0.017	0.060	0.29	1.4	0.092	0.99	0.041	0.014	ND<0.008	0.015	ND<0.008	18,000	230,000	-	-
Fluoranthene	0.23	0.68	2.2	13	1.1	6.4	0.33	0.098	0.034	0.023	0.063	-	-	2,301	26,371
Pyrene	0.18	0.61	1.8	12	0.86	4.8	0.22	0.10	0.031	0.077	0.052	1,800	23,000	-	-
Benzo(a)anthracene	0.083	0.41	1.4	7.2	0.44	4.1	0.12	0.055	0.019	0.011	0.032	1.1	21	-	-
Chrysene	0.099	0.42	1.4	7.1	0.53	4.0	0.13	0.063	0.020	0.021	0.034	110	2,100	-	-
Benzo(b)fluoranthene	0.14	0.62	2.4	11	0.76	6.1	0.21	0.079	0.032	0.024	0.060	1.1	21	-	-
Benzo(k)fluoranthene	0.052	0.24	0.83	3.7	0.28	2.4	0.081	0.028	0.011	ND<0.008	0.023	11	210	-	-
Benzo(a)pyrene	0.12	0.55	2.0	9.5	0.59	4.8	0.16	0.070	0.026	0.012	0.047	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.086	0.38	0.94	8.0	0.24	1.5	0.065	0.025	0.011	0.021	0.023	1.1	21	-	-
Dibenz(a,h)anthracene	0.019	0.090	0.24	1.8	0.060	0.43	0.015	ND<0.008	ND<0.008	ND<0.008	ND<0.008	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.085	0.34	0.77	8.1	0.20	1.1	0.056	0.024	0.011	0.028	0.022	-	-	-	-
Total Reported PAHs	1.3	4.7	15.6	90	5.9	40.7	1.74	0.63	0.22	0.27	0.40	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.17	0.78	2.7	14	0.80	6.4	0.22	0.090	0.036	0.022	0.063	-	-		0.58 (urban bkgd)
Nomba															

NOTES: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) fromMay 2020 RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.

Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Toxic Equivalency Calculations Pigeon Property Page 2 of 3

SB-101			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.083	0.1	0.0083
Chrysene	0.099	0.001	0.000099
Benzo(b)fluoranthene	0.14	0.1	0.014
Benzo(k)fluoranthene	0.052	0.01	0.00052
Benzo(a)pyrene	0.12	1	0.12
Indeno(1,2,3-cd)pyrene	0.086	0.1	0.0086
Dibenz(a,h)anthracene	0.019	1	0.019
	0.17		

SB-102			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.41	0.1	0.041
Chrysene	0.42	0.001	0.00042
Benzo(b)fluoranthene	0.62	0.1	0.062
Benzo(k)fluoranthene	0.24	0.01	0.0024
Benzo(a)pyrene	0.55	1	0.55
Indeno(1,2,3-cd)pyrene	0.38	0.1	0.038
Dibenz(a,h)anthracene	0.090	1	0.09
	0.78		
SB-103		-	

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	1.4	0.1	0.14
Chrysene	1.4	0.001	0.0014
Benzo(b)fluoranthene	2.4	0.1	0.24
Benzo(k)fluoranthene	0.83	0.01	0.0083
Benzo(a)pyrene	2.0	1	2
Indeno(1,2,3-cd)pyrene	0.94	0.1	0.094
Dibenz(a,h)anthracene	0.24	1	0.24
	2.7		
SB-104			

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	7.2	0.1	0.72
Chrysene	7.1	0.001	0.0071
Benzo(b)fluoranthene	11	0.1	1.1
Benzo(k)fluoranthene	3.7	0.01	0.037
Benzo(a)pyrene	9.5	1	9.5
Indeno(1,2,3-cd)pyrene	8.0	0.1	0.8
Dibenz(a,h)anthracene	1.8	1	1.8
	14.0		

SB-105			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.44	0.1	0.044
Chrysene	0.53	0.001	0.00053
Benzo(b)fluoranthene	0.76	0.1	0.076
Benzo(k)fluoranthene	0.28	0.01	0.0028
Benzo(a)pyrene	0.59	1	0.59
Indeno(1,2,3-cd)pyrene	0.24	0.1	0.024
Dibenz(a,h)anthracene	0.060	1	0.06
	0.80		

Toxic Equivalency Calculations Pigeon Property Page 3 of 3

SB-106

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to		
Pongo(a)anthracono	(IIIG/ KG) 4 1	0.1	0.41		
Chrysene	4.1	0.01	0.41		
Benzo(b)fluoranthene	4.0	0.001	0.61		
Benzo(k)fluoranthene	2.4	0.01	0.024		
Benzo(a)pyrene	4.8	1	4.8		
Indeno(1.2.3-cd)pyrene	1.5	0.1	0.15		
Dibenz(a,h)anthracene	0.43	1	0.43		
	Total Benz	o(a)pyrene Equivalent =	6.4		
SB-107					
	Concentration	Toxicity Equivalency	Toxicity Equivalents to		
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene		
Benzo(a)anthracene	0.12	0.1	0.012		
Chrysene	0.13	0.001	0.00013		
Benzo(b)fluoranthene	0.21	0.1	0.021		
Benzo(k)fluoranthene	0.081	0.01	0.00081		
Benzo(a)pyrene	0.16	1	0.16		
Indeno(1,2,3-cd)pyrene	0.065	0.1	0.0065		
Dibenz(a,n Janthracene	0.015		0.015		
SB-108	Total Benz	o(a)pyrene Equivalent =	0.22		
	Concentration	Toxicity Equivalency	Toxicity Equivalents to		
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene		
Benzo(a)anthracene	0.055	0.1	0.0055		
Chrysene	0.063	0.001	0.000063		
Benzo(b)fluoranthene	0.079	0.1	0.0079		
Benzo(k)fluoranthene	0.028	0.01	0.00028		
Benzo(a)pyrene	0.07	1	0.07		
Indeno(1,2,3-cd)pyrene	0.025	0.1	0.0025		
Dibenz(a,h)anthracene	ND<0.008	1	0.004		
	Total Benz	o(a)pyrene Equivalent =	0.090		
SB-109					
	Concentration	Toxicity Equivalency	Toxicity Equivalents to		
Contaminant	(mg/kg)	Factor	Toxicity Equivalents to Benzo(a)pyrene		
Contaminant Benzo(a)anthracene	Concentration (mg/kg) 0.019	Toxicity Equivalency Factor 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019		
Contaminant Benzo(a)anthracene Chrysene	Concentration (mg/kg) 0.019 0.020	Toxicity Equivalency Factor 0.1 0.001	Observe Observe <t< td=""></t<>		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	Concentration (mg/kg) 0.019 0.020 0.032	Oxicity Equivalency Factor 0.1 0.001 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.0032 0.00014		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	Concentration (mg/kg) 0.019 0.020 0.032 0.011	Oxicity Equivalency Factor 0.1 0.001 0.1 0.01	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00032 0.00011 0.026		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indono(1, 2, 3, cd)pyrene	Concentration (mg/kg) 0.019 0.020 0.032 0.011	Oxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00032 0.00011 0.026 0.0011		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibanz(a h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011	Oxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00032 0.00011 0.026 0.00011 0.004		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008	Ioxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 1 0 1 0	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00032 0.00011 0.026 0.004 0.004		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz	Ioxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 1 0.1 1 0.1 1 0.01	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.0032 0.00011 0.026 0.0011 0.004 0.036		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110	Concentration (mg/kg) 0.019 0.020 0.032 0.032 0.011 0.026 0.011 ND<0.008 Total Benz	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 1 co(a)pyrene Equivalent =	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.0032 0.00011 0.026 0.0011 0.004 0.036		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg)	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 1 o(a)pyrene Equivalent = Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 Toxicity Equivalency Factor 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.0011 0.026 0.0014 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.0011		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 1 0.1 1 0.1 1 0.1 0.1 0.001 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.0011 0.0024		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.001	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.00002 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.000021 0.00024 0.00004		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 0.024 ND<0.008	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.01 1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.0001 0.0012		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008 0.012 0.021	Toxicity Equivalency Factor 0.1 0.001 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.000021 0.000021 0.0024 0.00004 0.012 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008 0.012 0.021 ND<0.008	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.00011 0.000021 0.00021 0.0024 0.0004 0.012 0.0021 0.0021 0.0021 0.0021 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008 0.012 0.021 ND<0.008 Total Benz	Toxicity Equivalency Factor 0.1 0.001 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.00011 0.000021 0.000021 0.0024 0.0004 0.012 0.0021 0.0021 0.0021 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008 0.012 0.021 ND<0.008	Toxicity Equivalency Factor 0.1 0.001 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.00011 0.000021 0.00024 0.00004 0.012 0.0021 0.0021 0.0021 0.0021 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dup SB-107	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.024 ND<0.008 0.012 0.021 ND<0.008 Total Benz	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.001 1 0.1 1 0.1 1 0.1 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.0036 Toxicity Equivalents to Benzo(a)pyrene 0.00011 0.00021 0.00024 0.0024 0.0004 0.012 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dup SB-107 Contaminant Contaminant	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg)	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.001 0.1 0.01 0.1 0.01 1 0.01 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 <	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.0036 Toxicity Equivalents to Benzo(a)pyrene 0.00011 0.00021 0.00021 0.0024 0.0004 0.012 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.021 0.021 0.021 0.021 0.021 ND<0.008 Total Benz Concentration (mg/kg) Concentration	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 1 0.1 1 0.1 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.00011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.0024 0.00024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0032		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg) 0.032	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 1 0.1 1 0.1 0.1 0.1 0.1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.0011 0.026 0.0011 0.004 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.000021 0.0024 0.0024 0.0021 0.0024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0023 0.0032 0.0032 0.0032		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg) 0.032	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.01 1 0.001 0.1 0.01 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.0011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.00021 0.0024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0032 0.0032 0.00032 0.00034 0.006		
Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)anthracene Chrysene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 Total Benz 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg) 0.032	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 1 to(a)pyrene Equivalency Factor 0.1 0.01 1 0.01 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.00011 0.026 0.0011 0.004 0.004 0.0036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.00021 0.0024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022 Toxicity Equivalents to Benzo(a)pyrene 0.0032 0.0032 0.00034 0.0032 0.000034 0.006 0.00023		
Contaminant Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluo	Concentration (mg/kg) 0.019 0.020 0.032 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 Total Benz 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg) 0.032 0.034 0.034	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.01 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.00011 0.026 0.0011 0.004 0.0032 0.0011 0.004 0.0036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.0024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0023 0.0032 0.0032 0.0032 0.00034 0.00023 0.0047		
Contaminant Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Chrysene Benzo(a)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,b)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 Total Benz 0.012 0.021 ND<0.008 Total Benz Concentration (mg/kg) 0.032 0.034 0.034 0.023 0.047 0.023	Toxicity Equivalency Factor 0.1 0.001 0.1 0.01 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.0011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.0012 0.0024 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0023 0.0032 0.0032 0.0032 0.0032 0.0032 0.00034 0.0023 0.047 0.0023 0.004		
Contaminant Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene SB-110 Contaminant Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Chrysene Benzo(a)anthracene Dup SB-107 Contaminant Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(a)anthracene Chrysene Benzo(a)anthracene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Dibenz(a,h)anthracene	Concentration (mg/kg) 0.019 0.020 0.032 0.011 0.026 0.011 ND<0.008 Total Benz Concentration (mg/kg) 0.011 0.024 ND<0.008 Total Benz Concentration (mg/kg) 0.012 0.024 ND<0.008 Total Benz Concentration (mg/kg) 0.032 0.034 0.047 0.023 0.047 0.023 0.047	Toxicity Equivalency Factor 0.1 0.001 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.1 0.01 1 0.1	Toxicity Equivalents to Benzo(a)pyrene 0.0019 0.0002 0.0032 0.0011 0.026 0.0011 0.004 0.036 Toxicity Equivalents to Benzo(a)pyrene 0.0011 0.00021 0.00024 0.00021 0.0024 0.0021 0.0021 0.0023 0.0032 0.0032 0.0032 0.00034 0.0023 0.0047 0.0023 0.0047 0.0023 0.004		

Brownfields Supplemental Site Assessment Pigeon Property Westford, Vermont Soil Vapor Data Summary Page 1 of 1

	SAMPLING LOCATION						Vapor	Vapor
Parameter	Ambient	SG-2	SG-3	SG-4	VP-1	VP-2	Intrusion	Intrusion
Sampling Date	1/5/21	1/5/21	1/5/21	1/5/21	1/5/21	1/5/21	Standards	Standards
EPA TO-15 (μg/m³)	Result	Result	Result	Result	Result	Result	Residental	Non-Resident
Acetone	7.6	<9.5	< 9.5	<9.5	160	10	-	-
Benzene	0.47	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	4.3	35
Benzyl chloride	< 0.18	< 0.52	< 0.52	< 0.52	< 0.52	< 0.52	-	-
Bromodichloromethane	< 0.23	<0.67	<0.67	<0.67	< 0.67	<0.67	-	-
Bromoform	< 0.36	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromomethane (Methyl bromide)	< 0.14	< 0.39	< 0.39	< 0.39	< 0.39	< 0.39	-	-
1,3-Butadiene	< 0.077	< 0.22	<0.22	< 0.22	<0.22	<0.22	-	-
Methyl Ethyl Ketone (2-Butanone)	<4.1	<12	<12	<12	<12	<12	-	-
Carbon Disulfide	<1.1	<3.1	<3.1	<3.1	<3.1	<3.1	-	-
Carbon Tetrachloride	0.50	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	5.7	45
Chlorobenzene	< 0.16	<0.46	<0.46	<0.46	< 0.46	< 0.46	-	-
Chloroethane	<0.092	< 0.26	<0.26	< 0.26	< 0.26	<0.26	330000	1200000
Chloroform	<0.17	<0.49	<0.49	<0.49	<0.49	<0.49	1.3	12
Chloromethane	<0.14	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	-
Cyclonexane	<0.12	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	-	-
Dibromochioromethane	< 0.30	< 0.85	< 0.85	< 0.85	< 0.85	< 0.85	-	-
Dibromoethane, (1,2)	< 0.27	<0.77	<0.77	<0.77	< 0.77	< 0.77	-	-
Dichlorobenzene (ortho)	< 0.21	< 0.60	<0.60	< 0.60	< 0.60	< 0.60	-	-
Dichlorobonzono (nara)	<0.21	<0.60	<0.60	<0.60	< 0.60	<0.60	-	-
Dichlorodifluoromethano (From 12)	<0.21	<0.60	< 0.60	<0.60	< 0.60	<0.60	-	-
Dichloroothano (1.1)	<0.17	<0.49	<0.49	<0.49	<0.49	<0.49	21	170
Dichloroethane (1,1)	<0.14	<0.40	<0.40	<0.40	<0.40	<0.40	21	170
Dichloroethylene 11-	<0.14	<0.40	<0.40	<0.40	<0.40	<0.40	6700	23000
Dichloroethylene, 1,1-	<0.14	<0.40	<0.40	<0.40	<0.40	<0.40	-	23000
Dichloroethene (trans-1.2)	<0.14	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
Dichloropropane (1.2)	<0.11	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
Dichloropropene (cis-1.3)	< 0.16	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	-	-
trans-1.3-Dichloropropene	< 0.16	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	-	-
1.2-Dichloro-1.1.2.2-tetrafluoroethane (Freon 114)	< 0.24	< 0.70	< 0.70	< 0.70	< 0.70	< 0.70	-	-
Dioxane (1.4)	<1.3	<3.6	<3.6	<3.6	<3.6	<3.6	-	-
Ethanol	4.5	<7.5	<7.5	<7.5	250	17	-	-
Ethyl Acetate	<1.3	<3.6	<3.6	<3.6	<3.6	<3.6	-	-
Ethylbenzene	< 0.15	< 0.43	< 0.43	< 0.43	0.47	< 0.43	13	110
4-Ethyltoluene	< 0.17	< 0.49	< 0.49	< 0.49	< 0.49	< 0.49	-	-
Heptane	< 0.14	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	-
Hexachlorobutadiene	< 0.37	<1.1	<1.1	<1.1	<1.1	<1.1	-	-
Hexane	<4.9	<14	<14	<14	<14	<14	-	-
2-Hexanone (MBK)	< 0.29	< 0.82	< 0.82	< 0.82	< 0.82	<0.82	-	-
Isopropanol	<3.4	<9.8	<9.8	<9.8	21	<9.8	-	-
Methyl tert-butyl ether (MTBE)	< 0.13	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	-	-
Methylene Chloride	1.8	<3.5	<3.5	6.0	<3.5	<3.5	2000	27000
4-Methyl-2-pentanone (MIBK)	< 0.14	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	-
Naphthalene	<0.18	< 0.52	< 0.52	< 0.52	< 0.52	<0.52	1	8
Propene	<2.4	<6.9	<6.9	<6.9	<6.9	<6.9	-	-
Styrene	< 0.15	< 0.43	< 0.43	< 0.43	< 0.43	< 0.43	-	-
1,1,2,2-Tetrachloroethane	< 0.24	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	-	-
Tetrachloroethylene	<0.24	8.9	0.85	<0.68	<0.68	<0.68	21	170
Tetrahydrofuran	<1.0	<2.9	3.1	<2.9	<2.9	<2.9	-	-
Toluene	0.46	<0.38	<0.38	<0.38	1.3	0.38	-	-
Trichlensethene (1,2,4)	<0.26	<0.74	<0.74	<0.74	<0.74	<0.74	-	-
Trichloroethane (1,1,1)	<0.19	< 0.55	<0.55	< 0.55	< 0.55	< 0.55	-	-
Trichloroothylono	<0.19	< 0.55	< 0.55	< 0.55	< 0.55	< 0.55	67	- 22
Trichlorofluoromethane (From 11)	17	74	<0.34	<0.34	<0.34	<0.34	0.7	23
1 1 2-Trichloro-1 2 2-trifluoroothano (Froor 112)	1.4 <11	/.4t	~ 2.2	~2.2	<2.2	~ 2.2	-	-
1,1,2-methylbenzene (1 2 4)	<0.17	<0.40	<0.40	<0.40	<0.10	<0.10	2000*	7000*
Trimethylbenzene (1,2,+)	<0.17	<0.49	<0.49	<0.49	<0.49	<0.49	2000*	7000*
Vinvl Acetate	<25	<7.0	<70	<7.0	<7.0	<7.0	-	-
Vinyl Chloride	<0.089	<0.26	<0.26	<0.26	<0.26	<0.26	37	62
m&p-Xvlene	<0.30	<0.87	<0.87	<0.87	1.9	<0.87	-	-
o-Yulene	<0.15	<0.43	0.4.8	<0.43	1.0	<0.43		l _

NOTES:

NOTES: 1. Vermont Sub-Slab Soil Vapor Intrusion Standards from July 2019 DEC I-Rule 2. < in result column indicates analyte is not detected above the lab reporting limit shown. 3. "-" Indicates no regulatory limits. 4. "*" Standard is sum of all trimethylbenzene isomers 5. Values in bold indicate compound detected above laboratory detection limit 6. Reported results or reporting limits equal to or in excess of residential thresholds are shaded.

Brownfields Contaminated Soil Delineation Investigation Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863, EPA RFA 19093

September 29, 2021

Prepared for:

Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 <u>www.leenv.net</u>

LEE #19-138

Contents

1.0	EXECUTIVE SUMMARY	3
2.0	SITE INFORMATION	4
3.0	CURRENT USE OF THE SITE	4
4.0	CURRENT ADJOINING PROPERTY USES	5
5.0	SITE DESCRIPTION	5
6.0	LATITUDE/LONGITUDE	5
7.0	PROPERTY HISTORY	5
8.0	SITE CONTAMINANT BACKGROUND	8
9.0	UPDATED CONCEPTUAL SITE MODEL	9
А.	Updated Site Conceptual Model	9
B.	Potential Contamination Sources1	1
С.	Potential Receptors1	1
D.	Utility Corridors1	1
E.	Water Bodies and Wetlands1	1
F.	Water Supplies1	2
G.	Site Users1	2
10.0	WORK PLAN DEVIATIONS1	2
11.0	SAMPLE COLLECTION DOCUMENTATION1	2
12.0	CONTAMINATED MEDIA CHARACTERIZATION 1	13
13.0	SITE-SPECIFIC RISK ASSESSMENT 1	4
14.0	MAPS1	4
15.0	DISCUSSION1	4
16.0	DATA PRESENTATION1	15
17.0	QA/QC SAMPLE RESULTS1	15
18.0	INVESTIGATION DERIVED WASTE1	15
19.0	CONCLUSIONS AND RECOMMENDATIONS1	15
20.0	SIGNATURE AND CERTIFICATION1	16
21.0	MAPS AND APPENDICES1	17

1.0 EXECUTIVE SUMMARY

LE Environmental LLC (LEE) conducted a Brownfields Contaminated Soil Delineation Investigation at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The Contaminated Soil Delineation Investigation was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated July 7, 2021, approved August 23, 2021, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). Funding for this investigation was supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

The Site includes a vacant residence and a former bus repair garage and gasoline filling station on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858, and historic Site use has included residential, a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property, and a tannery was noted on the adjoining property to the west in 1869.

Previous environmental investigations conducted at the Site have revealed the presence of Polycyclic Aromatic Hydrocarbons (PAHs) in soils on the Site, as well as Volatile Organic Compounds (VOCs) in the groundwater. The objective of this investigation was to delineate soils impacted with PAHs on the Site.

Thirteen soil borings were advanced at the Site, and 15 soil samples and a duplicate were collected and analyzed for the presence of PAHs via EPA Method 8270d. Soil borings were advanced to a depth of 1.5' bg to collect shallow soil samples at SB-111 through SB-121. Soil borings SB-122 and SB-123 were advanced to a depth of 6' below grade (bg) to collect deeper soil samples. Soil samples were all screened for VOCs using a calibrated PID. No VOCs above background were reported in the soil samples.

PAH toxicity equivalency quotient (TEQ) concentrations in excess of the DEC's Statewide Urban Background concentration were identified in four of the fifteen soil samples obtained during this investigation (SB-117, SB-118, SB-119, and SB-120). The northwestern, western, southern, and eastern extent of PAH-impacted shallow soils have been defined during this investigation and previous investigations. PAH contaminated soils appear to extend down the ravine some distance north beyond the soil samples collected during this investigation.

Deeper soil samples were also analyzed for PAHs at two locations during this investigation, and at two other locations during previous investigations. The vertical extent of PAH contamination appears to generally be limited to the upper soil horizons (0-18" bg). However, PAH TEQ in excess of the DEC's Statewide Urban Background concentration was observed in the 2-4' bg sample obtained at SB-122.

The PAH contamination present on the Site is likely attributed to the historic storage of buses, auto parts, and other machinery in the area north and northeast of the garage. Disturbed soils and fill were noted in the soil samples obtained in the heavily vegetated/ravine area (northeast of the garage), and these fill soils may also be a source of PAHs.

LEE recommends an evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) be prepared once a redevelopment plan is solidified per the requirements of Subchapter 6 of the DEC's I-Rule. Additional soil delineation may be warranted prior to or during the completion of the ECAA and CAP.

2.0 SITE INFORMATION

LE Environmental LLC (LEE) conducted a Brownfields Contaminated Soil Delineation Investigation at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The Contaminated Soil Delineation Investigation was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated July 7, 2021, approved August 23, 2021, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). This assessment was conducted for the Chittenden County Regional Planning Commission (CCRPC). Funding for this investigation was supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. CCRPC is funding this work via EPA Brownfields Assessment Grant #BF00A00483. The Site owner is the Pigeon Family Living Trust.

Site Information Table				
Site Owner Name:	Pigeon Family Living Trust – George Pigeon			
Site Owner Address:	1705 Route 128, Westford, VT 05494			
Site Owner E-mail:	gepigeon@msn.com			
Site Owner Phone:	(802) 355-6628			

3.0 CURRENT USE OF THE SITE

The Site includes a vacant residence and a former bus garage on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage.

Soil PAH Delineation **Pigeon Property** Westford, Vermont Soil Data Summary

Page 1 of 4

Sample Identification Sample Depth (ft. bg) PID Reading (ppm) Sample Date	SB-111 0-1.5 0.0 9/10/21	SB-112 0-1.5 0.0 9/10/21	SB-113 0-1.5 0.0 9/10/21	SB-114 0-1.5 0.0 9/10/21	SB-115 0-1.5 0.1 9/10/21	SB-116 0-1.5 0.1 9/10/21	SB-117 0-1.5 0.1 9/10/21	SB-118 0-1.5 0.3 9/10/21	SB-119 0-1.5 0.1 9/10/21	SB-120 0-1.5 0.3 9/10/21	SB-121 0-1.5 0.1 9/10/21	EPA Residential RSL (mg/kg)	EPA Industrial RSL (mg/kg)	VSS Residential (mg/kg)	VSS Non- Residential (mg/kg)
PAH EPA Method 8270D (mg/kg)															
Naphthalene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	ND<0.008	0.032	0.041	0.035	0.26	ND<0.008	-	-	2.7	16
2-Methylnaphthalene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	ND<0.008	0.014	0.022	0.016	0.32	ND<0.008	240	3,000	-	-
1-Methylnaphthalene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	ND<0.008	0.015	0.022	0.016	0.53	ND<0.008	18	73	-	-
Acenaphthylene	ND<0.009	ND<0.008	0.011	ND<0.007	ND<0.008	0.051	0.45	0.28	0.55	2.9	0.025	-	-	-	-
Acenaphthene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	ND<0.008	0.028	0.019	0.037	0.65	ND<0.008	3,600	45,000	-	-
Fluorene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	0.0089	0.12	0.077	0.15	2.9	ND<0.008	-	-	2,301	26,371
Phenanthrene	ND<0.009	0.024	0.018	ND<0.007	0.011	0.080	1.4	0.66	2.3	19	0.011	-	-	-	-
Anthracene	ND<0.009	ND<0.008	ND<0.008	ND<0.007	ND<0.008	0.026	0.39	0.22	0.44	4.1	ND<0.008	18,000	230,000	-	-
Fluoranthene	ND<0.009	0.045	0.084	0.011	0.018	0.33	4.4	1.9	4.5	34	0.029	-	-	2,301	26,371
Pyrene	ND<0.009	0.039	0.081	0.012	0.015	0.31	4.0	1.6	3.5	29	0.024	1,800	23,000	-	-
Benzo(a)anthracene	ND<0.009	0.023	0.050	0.0083	0.0091	0.17	2.2	0.93	2.0	12	0.015	1.1	21	-	-
Chrysene	ND<0.009	0.023	0.051	ND<0.007	0.0082	0.18	2.2	0.97	2.2	11	0.012	110	2,100	-	-
Benzo(b)fluoranthene	ND<0.009	0.038	0.084	0.010	0.012	0.28	2.9	1.4	2.8	14	0.024	1.1	21	-	-
Benzo(k)fluoranthene	ND<0.009	0.012	0.027	ND<0.007	ND<0.008	0.090	0.94	0.49	1.0	4.5	ND<0.008	11	210	-	-
Benzo(a)pyrene	ND<0.009	0.029	0.066	0.0073	0.0091	0.22	2.5	1.1	2.1	12	0.018	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	ND<0.009	0.027	0.052	0.0072	0.0084	0.19	2.0	0.65	0.82	8.7	0.011	1.1	21	-	-
Dibenz(a,h)anthracene	ND<0.009	ND<0.008	0.011	ND<0.007	ND<0.008	0.039	0.44	0.13	0.21	1.6	ND<0.008	0.11	2.1	-	-
Benzo(g,h,i)perylene	ND<0.009	0.028	0.052	ND<0.007	0.0088	0.19	1.7	0.53	0.64	8.9	0.0093	-	-	-	-
Total Reported PAHs	ND	0.29	0.59	0.056	0.10	2.2	25.7	11.0	23.3	166	0.18	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.01	0.04	0.10	0.01	0.02	0.32	3.7	1.5	2.9	17	0.03	-	-		0.58 (urban bkgd)

Sample Identification	SB-122S	SB-122D	SB-123S	SB-123D	Dup SB-114	ED 4		VCC	UCC Non
Sample Depth (ft. bg)	2-4	4-6	2-4	4-6	0-1.5	EPA Desidential	EPA Industrial	V33 Davidantial	VSS NON-
PID Reading (ppm)	0.4	0.2	0.1	0.1	0.0	Residential	RSL (mg/kg)	Kesidenuui	(m = (h=)
Sample Date	9/10/21	9/10/21	9/10/21	9/10/21	9/10/21	KSL (MY/KY)		(ту/ку)	(ту/ку)
PAH EPA Method 8270D (mg/kg)									
Naphthalene	0.058	0.016	ND<0.009	ND<0.008	ND<0.007	-	-	2.7	16
2-Methylnaphthalene	0.051	ND<0.008	ND<0.009	ND<0.008	ND<0.007	240	3,000	-	-
1-Methylnaphthalene	0.065	ND<0.008	ND<0.009	ND<0.008	ND<0.007	18	73	-	-
Acenaphthylene	0.33	0.022	0.037	0.0096	ND<0.007	-	-	-	-
Acenaphthene	0.062	ND<0.008	ND<0.009	ND<0.008	ND<0.007	3,600	45,000	-	-
Fluorene	0.27	ND<0.008	ND<0.009	ND<0.008	ND<0.007	-	-	2,301	26,371
Phenanthrene	2.1	0.032	0.043	ND<0.008	0.036	-	-	-	-
Anthracene	0.45	ND<0.008	0.020	ND<0.008	ND<0.007	18,000	230,000	-	-
Fluoranthene	3.6	0.056	0.18	0.017	0.025	-	-	2,301	26,371
Pyrene	2.7	0.042	0.14	0.016	0.023	1,800	23,000	-	-
Benzo(a)anthracene	1.4	0.024	0.091	0.011	0.011	1.1	21	-	-
Chrysene	1.4	0.038	0.096	0.011	0.011	110	2,100	-	-
Benzo(b)fluoranthene	2.1	0.059	0.16	0.020	0.016	1.1	21	-	-
Benzo(k)fluoranthene	0.71	0.020	0.056	ND<0.008	ND<0.007	11	210	-	-
Benzo(a)pyrene	1.6	0.027	0.12	0.013	0.011	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.72	0.022	0.060	0.0090	ND<0.007	1.1	21	-	-
Dibenz(a,h)anthracene	0.15	ND<0.008	0.013	ND<0.008	ND<0.007	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.56	0.019	0.048	ND<0.008	ND<0.007	-	-	-	-
Total Reported PAHs	18.3	0.38	1.06	0.11	0.133	-	-	-	-
PAH TEO as Benzo(a) nyrene	2.2	0.04	0.16	0.02	0.02		-		0.58 (urban bkgd

NOTES:

Vo IES: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) fromMay 2020 RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded. Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Toxic Equivalency Calculations Pigeon Property Page 2 of 4

SB-111			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	ND<0.009	0.1	0.00045
Chrysene	ND<0.009	0.001	0.0000045
Benzo(b)fluoranthene	ND<0.009	0.1	0.00045
Benzo(k)fluoranthene	ND<0.009	0.01	0.000045
Benzo(a)pyrene	ND<0.009	1	0.0045
Indeno(1,2,3-cd)pyrene	ND<0.009	0.1	0.00045
Dibenz(a,h)anthracene	ND<0.009	1	0.0045
SB-112	Total Benz	co(a)pyrene Equivalent =	0.01
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.023	0.1	0.0023
Chrysene	0.023	0.001	0.000023
Benzo(b)fluoranthene	0.038	0.1	0.0038
Benzo(k)fluoranthene	0.012	0.01	0.00012
Benzo(a)pyrene	0.029	1	0.029
Indeno(1,2,3-cd)pyrene	0.027	0.1	0.0027
Dibenz(a,n)anthracene	ND<0.008	l	0.004
SB-113	Total Benz	o(a)pyrene Equivalent =	0.04
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.05	0.1	0.005
Chrysene	0.051	0.001	0.000051
Benzo(b)fluoranthene	0.084	0.1	0.0084
Benzo(k)fluoranthene	0.027	0.01	0.00027
Benzo(a)pyrene	0.066	1	0.066
Indeno(1,2,3-cd)pyrene	0.052	0.1	0.0052
Dibenz(a,h)anthracene	0.011	1	0.011
SB-114	Total Benz	zo(a)pyrene Equivalent =	0.10
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.0083	0.1	0.00083
Chrysene	ND<0.007	0.001	0.000035
Benzo(b)fluoranthene	0.010	0.1	0.001
Benzo(k)fluoranthene	ND<0.007	0.01	0.000035
Benzo(a)pyrene	0.0073	1	0.0073
Indeno(1,2,3-cd)pyrene	0.0072	0.1	0.00072
Dibenz(a,h)anthracene	ND<0.007	1	0.0035
SB-115	Total Benz	to(a)pyrene Equivalent =	0.01
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.0091	0.1	0.00091
Chrysene	0.0082	0.001	0.0000082
Benzo(b)fluoranthene	0.012	0.1	0.0012
Benzo(k)fluoranthene	ND<0.008	0.01	0.00004
Benzo(a)pyrene	0.0091	1	0.0091
Indeno(1,2,3-cd)pyrene	0.0084	0.1	0.00084
Dibenz(a,h)anthracene	ND<0.008	1	0.004
	Total Benz	xo(a)pyrene Equivalent =	0.02
SB-116			
Contominant	Concentration	Toxicity Equivalency	Toxicity Equivalents to
	(mg/kg)	Factor	Benzo(a)pyrene
Christono	0.17	0.001	0.017
Citysene Ronzo(b)fluorenthene	0.18	0.001	0.00018
Benzo(k)fluoranthene	0.28	0.1	0.028
Benzo(a)pyrene	0.090	1	0.22
Indeno(1.2.3-cd)nvrene	0.19	0.1	0.019
Dibenz(a,h)anthracene	0.039	1	0.039

0.039 1 Total Benzo(a)pyrene Equivalent = 0.32

Toxic Equivalency Calculations Pigeon Property Page 3 of 4

2.2

SB-117	0		
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	2.2	0.1	0.22
Chrysene	2.2	0.001	0.0022
Benzo(b)fluoranthene	2.9	0.1	0.29
Benzo(k)fluoranthene	0.94	0.01	0.0094
Benzo(a)pyrene	2.5	1	2.5
Indeno(1,2,3-cd)pyrene	2.0	0.1	0.2
Dibenz(a,h)anthracene	0.44	1	0.44
SR-118	Total Benz	zo(a)pyrene Equivalent =	3.7
55 110	Concontration	Toxicity Faujyaloney	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Renzo(a)nvrene
	(IIIg/ Kg)	0.1	0.002
Chargen e	0.93	0.001	0.093
Rongo(b)fluoronthono	0.97	0.001	0.00097
Benzo(b)fluoranthene	1.4	0.1	0.14
Benzo(k)nuoraninene	0.49	0.01	0.0049
Benzo(a)pyrene	1.1	1	1.1
Dihana (a,b) anthronous	0.65	0.1	0.065
Dibenz(a,n)anthracene	U.13	I (a) ann a Earright -	0.13
SB-119	Total Benz	o(a)pyrene Equivalent =	1.5
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	2.0	0.1	0.2
Chrysene	2.2	0.001	0.0022
Benzo(b)fluoranthene	2.8	0.1	0.28
Benzo(k)fluoranthene	1.0	0.01	0.01
Benzo(a)pyrene	2.1	1	2.1
Indeno(1.2.3-cd)pyrene	0.82	0.1	0.082
Dibenz(a,h)anthracene	0.21	1	0.21
	Total Benz	zo(a)pyrene Equivalent =	2.9
SB-120			
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	12	0.1	1.2
Chrysene	11	0.001	0.011
Benzo(b)fluoranthene	14	0.1	1.4
Benzo(k)fluoranthene	4.5	0.01	0.045
Benzo(a)pyrene	12	1	12
Indeno(1,2,3-cd)pyrene	8.7	0.1	0.87
Dibenz(a,h)anthracene	1.6	1	1.6
	Total Benz	xo(a)pyrene Equivalent =	17
SB-121			
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.015	0.1	0.0015
Chrysene	0.012	0.001	0.000012
Benzo(b)fluoranthene	0.024	0.1	0.0024
Benzo(k)fluoranthene	ND<0.008	0.01	0.00004
Benzo(a)pyrene	0.018	1	0.018
Indeno(1,2,3-cd)pyrene	0.011	0.1	0.0011
Dibenz(a,h)anthracene	ND<0.008	1	0.004

	Total Benz	zo(a)pyrene Equivalent =	0.03	
SB-122S	Concentration	Toxicity Equivalency	Toxicity Equivalents to	
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene	
Benzo(a)anthracene	1.4	0.1	0.14	
Chrysene	1.4	0.001	0.0014	
Benzo(b)fluoranthene	2.1	0.1	0.21	
Benzo(k)fluoranthene	0.71	0.01	0.0071	
Benzo(a)pyrene	1.6	1	1.6	
Indeno(1,2,3-cd)pyrene	0.72	0.1	0.072	
Dibenz(a,h)anthracene	0.15	1	0.15	

0.15 1 Total Benzo(a)pyrene Equivalent =

Toxic Equivalency Calculations Pigeon Property Page 4 of 4

SP 122D	8-			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene	
Benzo(a)anthracene	0.024	0.1	0.0024	
Chrysene	0.038	0.001	0.000038	
Benzo(b)fluoranthene	0.059	0.1	0.0059	
Benzo(k)fluoranthene	0.020	0.01	0.0002	
Benzo(a)pyrene	0.027	1	0.027	
Indeno(1,2,3-cd)pyrene	0.022	0.1	0.0022	
Dibenz(a,h)anthracene	ND<0.008	1	0.004	
Total Benzo(a)pyrene Equivalent = 0.04				

SB-123S

00 1000			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.091	0.1	0.0091
Chrysene	0.096	0.001	0.000096
Benzo(b)fluoranthene	0.16	0.1	0.016
Benzo(k)fluoranthene	0.056	0.01	0.00056
Benzo(a)pyrene	0.12	1	0.12
Indeno(1,2,3-cd)pyrene	0.060	0.1	0.006
Dibenz(a,h)anthracene	0.013	1	0.013
	0.16		

SB-123D

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.011	0.1	0.0011
Chrysene	0.011	0.001	0.000011
Benzo(b)fluoranthene	0.020	0.1	0.002
Benzo(k)fluoranthene	ND<0.008	0.01	0.00004
Benzo(a)pyrene	0.013	1	0.013
Indeno(1,2,3-cd)pyrene	0.0090	0.1	0.0009
Dibenz(a,h)anthracene	ND<0.008	1	0.004
	0.02		

	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.011	0.1	0.0011
Chrysene	0.011	0.001	0.000011
Benzo(b)fluoranthene	0.016	0.1	0.0016
Benzo(k)fluoranthene	ND<0.007	0.01	0.000035
Benzo(a)pyrene	0.011	1	0.011
Indeno(1,2,3-cd)pyrene	ND<0.007	0.1	0.00035
Dibenz(a,h)anthracene	ND<0.007	1	0.0035
	Total Benz	o(a)pyrene Equivalent =	0.02

Brownfields Contaminated Soil Delineation Investigation Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863, EPA RFA 19093

June 24, 2022

Prepared for: Chittenden County Regional Planning Commission 110 West Canal Street, Suite 202 Winooski, Vermont 05404

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001 <u>www.leenv.net</u>

LEE #19-138

This Brownfields Contaminated Soil Delineation Investigation Report for Chittenden County Regional Planning Commission is made possible in part by a grant from the State of Vermont through the Agency of Commerce and Community Development, Department of Economic Development

Contents

1.0	EXECUTIVE SUMMARY	3
2.0	SITE INFORMATION	4
3.0	CURRENT USE OF THE SITE	4
4.0	CURRENT ADJOINING PROPERTY USES	4
5.0	SITE DESCRIPTION	5
6.0	LATITUDE/LONGITUDE	5
7.0	PROPERTY HISTORY	5
8.0	SITE CONTAMINANT BACKGROUND	5
9.0	UPDATED CONCEPTUAL SITE MODEL	9
А.	Updated Site Conceptual Model	9
B.	Potential Contamination Sources1	.1
С.	Potential Receptors1	.2
D.	Utility Corridors1	.2
E.	Water Bodies and Wetlands1	.2
F.	Water Supplies1	.2
G.	Site Users1	.3
10.0	WORK PLAN DEVIATIONS1	.3
11.0	SAMPLE COLLECTION DOCUMENTATION1	.3
12.0	CONTAMINATED MEDIA CHARACTERIZATION 1	.3
13.0	SITE-SPECIFIC RISK ASSESSMENT 1	.4
14.0	MAPS 1	.4
15.0	DISCUSSION1	.4
16.0	DATA PRESENTATION1	.5
17.0	QA/QC SAMPLE RESULTS1	.5
18.0	INVESTIGATION DERIVED WASTE1	.5
19.0	CONCLUSIONS AND RECOMMENDATIONS1	.5
20.0	SIGNATURE AND CERTIFICATION1	.6
21.0	MAPS AND APPENDICES1	.7

1.0 EXECUTIVE SUMMARY

LE Environmental LLC (LEE) conducted a Brownfields Contaminated Soil Delineation Investigation at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The Contaminated Soil Delineation Investigation was completed by LEE for the Chittenden County Regional Planning Commission (CCRPC) of Winooski, Vermont and was made possible in part by a grant from the State of Vermont through the Agency of Commerce and Community Development, Department of Economic Development. The work was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated May 16, 2022, approved May 25, 2022, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). Funding for this investigation was also supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. The Site owner is the Pigeon Family Living Trust.

The Site includes a vacant residence and a former bus repair garage and gasoline filling station on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage. The Site was developed prior to 1858, and historic Site use has included residential, a gasoline filling station, and automotive and bus repair. A small store was also once present on the southeastern portion of the property, and a tannery was noted on the adjoining property to the west in 1869.

Previous environmental investigations conducted at the Site have revealed the presence of Polycyclic Aromatic Hydrocarbons (PAHs) in soils on the Site, as well as Volatile Organic Compounds (VOCs) in the groundwater. The objective of this investigation was to delineate shallow soils impacted with PAHs on the Site.

Twelve soil borings were advanced at the Site, and 12 shallow soil samples and a duplicate were collected and analyzed for the presence of PAHs via EPA Method 8270d. Soil borings were advanced to a depth of 1.5' below grade (bg) to collect shallow soil samples at each soil boring. Soil samples were screened for VOCs using a calibrated PID. No VOCs above background were reported in the soil samples.

This investigation completed the objective of defining PAH contamination in shallow soil on the Site. Concentrations of PAHs were reported in all of the soil samples and PAH concentrations were converted to PAH toxicity equivalency quotient (TEQ) relative to benzo[a]pyrene. PAH TEQ concentrations were all below the DEC's Statewide Urban Background concentration. Concentrations generally decreased northward.

The PAH contamination present on the Site is likely attributed to the historic storage of buses, auto parts, and other machinery in the area north and northeast of the garage as well as fill soils along the ravine.

LEE recommends an evaluation of corrective action alternatives (ECAA) and a corrective action plan (CAP) be prepared once a redevelopment plan is solidified per the requirements of Subchapter 6 of the DEC's I-Rule.

2.0 SITE INFORMATION

LE Environmental LLC (LEE) conducted a Brownfields Contaminated Soil Delineation Investigation at the Pigeon Property, located at 1705 Route 128, Westford, Chittenden County, Vermont (Site). The Contaminated Soil Delineation Investigation was completed by LEE for the Chittenden County Regional Planning Commission (CCRPC) of Winooski, Vermont and was made possible in part by a grant from the State of Vermont through the Agency of Commerce and Community Development, Department of Economic Development. The work was conducted pursuant to the approved Site-Specific Quality Assurance Project Plan Addendum (SSQAPP Addendum) dated May 16, 2022, approved May 25, 2022, and the American Society of Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903-11). Funding for this investigation was also supported by the US Environmental Protection Agency (USEPA), the CCRPC, and the nineteen member municipalities in Chittenden County. The Site owner is the Pigeon Family Living Trust.

Site Information Table			
Site Owner Name:	Pigeon Family Living Trust – George Pigeon		
Site Owner Address:	1705 Route 128, Westford, VT 05494		
Site Owner E-mail:	gepigeon@msn.com		
Site Owner Phone:	(802) 355-6628		

3.0 CURRENT USE OF THE SITE

The Site includes a vacant residence and a former bus garage on approximately 3.3 acres of land. The buildings are currently unoccupied and are used for storage.

4.0 CURRENT ADJOINING PROPERTY USES

Current uses of the adjoining properties are as follows:

- North: Residential
- South: Town Common
- East: Multi-family residential
- West: Municipal Offices

Soil PAH Delineation **Pigeon Property** Westford, Vermont Soil Data Summary

Page	1	of	3	
------	---	----	---	--

Sample Identification Sample Depth (ft. bg) PID Reading (ppm) Sample Date	SB-122 0-1.5 0.0 6/8/22	SB-123 0-1.5 0.0 6/8/22	SB-124 0-1.5 0.0 6/8/22	SB-125 0-1.5 0.0 6/8/22	SB-126 0-1.5 0.0 6/8/22	SB-127 0-1.5 0.0 6/8/22	SB-128 0-1.5 0.0 6/8/22	SB-129 0-1.5 0.0 6/8/22	SB-130 0-1.5 0.0 6/8/22	SB-131 0-1.5 0.0 6/8/22	SB-132 0-1.5 0.0 6/8/22	EPA Residential RSL (mg/kg)	EPA Industrial RSL (mg/kg)	VSS Residential (mg/kg)	VSS Non- Residential (mg/kg)
PAH EPA Method 8270D (mg/kg)															
Naphthalene	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	-	-	2.7	16
2-Methylnaphthalene	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	240	3,000	-	-
1-Methylnaphthalene	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	18	73	-	-
Acenaphthylene	0.026	0.021	0.015	ND< 0.01	0.022	ND< 0.008	ND< 0.009	0.0099	ND< 0.008	ND< 0.01	ND< 0.009	-	-	-	-
Acenaphthene	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	3,600	45,000	-	-
Fluorene	ND< 0.009	ND< 0.009	0.0087	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	-	-	2,301	26,371
Phenanthrene	0.09	0.059	0.11	0.02	0.011	ND< 0.008	0.013	0.036	ND< 0.008	ND< 0.01	0.024	-	-	-	-
Anthracene	0.022	0.019	0.011	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	18,000	230,000	-	-
Fluoranthene	0.25	0.3	0.15	0.042	0.051	0.014	0.02	0.074	0.013	0.012	0.041	-	-	2,301	26,371
Pyrene	0.2	0.27	0.13	0.035	0.078	0.012	0.017	0.071	0.012	0.01	0.034	1,800	23,000	-	-
Benzo(a)anthracene	0.11	0.14	0.062	0.017	0.047	0.0087	0.0093	0.04	0.0088	ND< 0.01	0.015	1.1	21	-	-
Chrysene	0.13	0.15	0.07	0.019	0.055	ND< 0.008	ND< 0.009	0.045	ND< 0.008	ND< 0.01	0.017	110	2,100	-	-
Benzo(b)fluoranthene	0.17	0.19	0.077	0.025	0.049	0.0085	0.0092	0.064	0.0091	ND< 0.01	0.021	1.1	21	-	-
Benzo(k)fluoranthene	0.07	0.072	0.027	0.011	0.019	ND< 0.008	ND< 0.009	0.023	ND< 0.008	ND< 0.01	ND< 0.009	11	210	-	-
Benzo(a)pyrene	0.14	0.16	0.067	0.021	0.055	ND< 0.008	ND< 0.009	0.053	ND< 0.008	ND< 0.01	0.017	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.09	0.12	0.047	0.017	0.026	ND< 0.008	ND< 0.009	0.037	ND< 0.008	ND< 0.01	0.012	1.1	21	-	-
Dibenz(a,h)anthracene	0.015	0.022	0.0095	ND< 0.01	ND< 0.009	ND< 0.008	ND< 0.009	ND< 0.009	ND< 0.008	ND< 0.01	ND< 0.009	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.083	0.12	0.044	0.016	0.025	ND< 0.008	ND< 0.009	0.033	ND< 0.008	ND< 0.01	0.01	-	-	-	-
Total Reported PAHs	1.4	1.6	0.83	0.22	0.438	0.043	0.01	0.49	0.043	0.02	0.19	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.19	0.23	0.10	0.03	0.07	0.01	0.01	0.07	0.01	0.01	0.03	-	-		0.58 (urban bkgd)

Sample Identification	SB-133	Dup SB-124	EDA		VCC	UCC Non
Sample Depth (ft. bg)	0-1.5	0-1.5	EPA	EPA Industrial	VSS Desidential	VSS Non-
PID Reading (ppm)	0.0	0.0	Residential	RSL (mg/kg)	Kesidentiai	Kesiaenaai
Sample Date	6/8/22	6/8/22	KSL (Mg/Kg)		(ту/ку)	(ту/ку)
PAH EPA Method 8270D (mg/kg)						
Naphthalene	ND< 0.009	ND< 0.008	-	-	2.7	16
2-Methylnaphthalene	ND< 0.009	ND< 0.008	240	3,000	-	-
1-Methylnaphthalene	ND< 0.009	ND< 0.008	18	73	-	-
Acenaphthylene	ND< 0.009	ND< 0.008	-	-	-	-
Acenaphthene	ND< 0.009	ND< 0.008	3,600	45,000	-	-
Fluorene	ND< 0.009	ND< 0.008	-	-	2,301	26,371
Phenanthrene	ND< 0.009	ND< 0.008	-	-	-	-
Anthracene	ND< 0.009	ND< 0.008	18,000	230,000	-	-
Fluoranthene	0.012	0.015	-	-	2,301	26,371
Pyrene	0.011	0.016	1,800	23,000	-	-
Benzo(a)anthracene	ND< 0.009	0.0098	1.1	21	-	-
Chrysene	ND< 0.009	0.0098	110	2,100	-	-
Benzo(b)fluoranthene	ND< 0.009	0.012	1.1	21	-	-
Benzo(k)fluoranthene	ND< 0.009	ND< 0.008	11	210	-	-
Benzo(a)pyrene	ND< 0.009	0.0097	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	ND< 0.009	ND< 0.008	1.1	21	-	-
Dibenz(a,h)anthracene	ND< 0.009	ND< 0.008	0.11	2.1	-	-
Benzo(g,h,i)perylene	ND< 0.009	ND< 0.008	-	-	-	-
Total Reported PAHs	0.023	0.072	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.01	0.02	-	-		0.58 (urban bkgd)

Vo IES: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) from May 2020 RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded. Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Toxic Equivalency Calculations Pigeon Property Page 2 of 3

SB-122			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.11	0.1	0.011
Chrysene	0.13	0.001	0.00013
Benzo(b)fluoranthene	0.17	0.1	0.017
Benzo(k)fluoranthene	0.070	0.01	0.0007
Benzo(a)pyrene	0.14	1	0.14
Indeno(1,2,3-cd)pyrene	0.090	0.1	0.009
Dibenz(a,h)anthracene	0.015	1	0.015
CD 122	Total Ber	nzo(a)pyrene Equivalent =	0.19
SB-123			
Contaminant	(mg/kg)	Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.14	0.1	0.014
Chrysene	0.15	0.001	0.00015
Benzo(b)fluoranthene	0.19	0.1	0.019
Benzo(k)fluoranthene	0.072	0.01	0.00072
Benzo(a)pyrene	0.16	1	0.16
Indeno(1,2,3-cd)pyrene	0.12	0.1	0.012
Dibenz(a,h)anthracene	0.022	1	0.022
	Total Ber	nzo(a)pyrene Equivalent =	0.23
SB-124			
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.062	0.1	0.0062
Chrysene	0.070	0.001	0.00007
Benzo(b)fluoranthene	0.077	0.1	0.0077
Benzo(k)fluoranthene	0.027	0.01	0.00027
Benzo(a)pyrene	0.067	1	0.067
Indeno(1,2,3-cd)pyrene	0.047	0.1	0.0047
Dibenz(a,h)anthracene	0.0095	1	0.0095
	Total Ber	nzo(a)pyrene Equivalent =	0.10
SB-125	1		
	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.017	0.1	0.0017
Chrysene	0.019	0.001	0.000019
Benzo(b)fluoranthene	0.025	0.1	0.0025
Benzo(k)fluoranthene	0.011	0.01	0.00011
Benzo(a)pyrene	0.021	1	0.021
Indeno(1,2,3-cd)pyrene	0.017	0.1	0.0017
Dibenz(a,h)anthracene	0.005	1	0.005
SP 126	Total Ber	nzo(a)pyrene Equivalent =	0.03
50 140	Concontration	Toxicity Equivalor or	Toxicity Equivalants to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.047	0.1	0.0047
Chrysene	0.055	0.001	0.000055
Benzo(b)fluoranthene	0.049	0.1	0.0049
Benzo(k)fluoranthene	0.019	0.01	0.00019
Benzo(a)pyrene	0.055	1	0.055
Indeno(1,2,3-cd)pyrene	0.026	0.1	0.0026
Dibenz(a,h)anthracene	0.0045	1	0.0045
	Total Ber	1zo(a)pyrene Equivalent =	0.07
\$B-127			
50 127	Concentration	Toxicity Equivalency	Toxicity Equivalents to
Contaminant	(mg/kg)	Factor	Benzo(a)pyrene

Contaminant	(mg/kg)	Factor	Benzo(a)pyrene
Benzo(a)anthracene	0.0087	0.1	0.00087
Chrysene	0.004	0.001	0.000004
Benzo(b)fluoranthene	0.0085	0.1	0.00085
Benzo(k)fluoranthene	0.004	0.01	0.00004
Benzo(a)pyrene	0.004	1	0.004
Indeno(1,2,3-cd)pyrene	0.004	0.1	0.0004
Dibenz(a,h)anthracene	0.004	1	0.004
	Total Ben	zo(a)pyrene Equivalent =	0.01

Toxic Equivalency Calculations Pigeon Property Page 3 of 3

SB-128	i ug	0000	
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.0093	0.1	0.00093
Chrysene	0.0045	0.001	0.0000045
Benzo(b)fluoranthene	0.0092	0.1	0.00092
Benzo(k)fluoranthene	0.0045	0.01	0.000045
Benzo(a)pyrene	0.0045	1	0.0045
Indeno(1,2,3-cd)pyrene	0.0045	0.1	0.00045
Dibenz(a,h)anthracene	0.0045	1	0.0045
	Total Ber	nzo(a)pyrene Equivalent =	0.01

SB-129			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.040	0.1	0.004
Chrysene	0.045	0.001	0.000045
Benzo(b)fluoranthene	0.064	0.1	0.0064
Benzo(k)fluoranthene	0.023	0.01	0.00023
Benzo(a)pyrene	0.053	1	0.053
Indeno(1,2,3-cd)pyrene	0.037	0.1	0.0037
Dibenz(a,h)anthracene	0.0045	1	0.0045
Total Benzo(a)pyrene Equivalent =			0.07

SB-130			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.0088	0.1	0.00088
Chrysene	0.004	0.001	0.000004
Benzo(b)fluoranthene	0.0091	0.1	0.00091
Benzo(k)fluoranthene	0.004	0.01	0.00004
Benzo(a)pyrene	0.004	1	0.004
Indeno(1,2,3-cd)pyrene	0.004	0.1	0.0004
Dibenz(a,h)anthracene	0.004	1	0.004
	Total Ber	zo(a)pyrene Equivalent =	0.01

	Total Del	0.01		
SB-131				
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene	
Benzo(a)anthracene	0.005	0.1	0.0005	
Chrysene	0.005	0.001	0.000005	
Benzo(b)fluoranthene	0.005	0.1	0.0005	
Benzo(k)fluoranthene	0.005	0.01	0.00005	
Benzo(a)pyrene	0.005	1	0.005	
Indeno(1,2,3-cd)pyrene	0.005	0.1	0.0005	
Dibenz(a,h)anthracene	0.005	1	0.005	
	Total Benzo(a)pyrene Equivalent =			

SB-132			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.015	0.1	0.0015
Chrysene	0.017	0.001	0.000017
Benzo(b)fluoranthene	0.021	0.1	0.0021
Benzo(k)fluoranthene	0.0045	0.01	0.000045
Benzo(a)pyrene	0.017	1	0.017
Indeno(1,2,3-cd)pyrene	0.012	0.1	0.0012
Dibenz(a,h)anthracene	0.0045	1	0.0045
	0.03		

SB-133

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.0045	0.1	0.00045
Chrysene	0.0045	0.001	0.0000045
Benzo(b)fluoranthene	0.0045	0.1	0.00045
Benzo(k)fluoranthene	0.0045	0.01	0.000045
Benzo(a)pyrene	0.0045	1	0.0045
Indeno(1,2,3-cd)pyrene	0.0045	0.1	0.00045
Dibenz(a,h)anthracene	0.0045	1	0.0045
	Total Benz	0.01	

Duplicate SB-124

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.0098	0.1	0.00098
Chrysene	0.0098	0.001	0.0000098
Benzo(b)fluoranthene	0.012	0.1	0.0012
Benzo(k)fluoranthene	0.004	0.01	0.00004
Benzo(a)pyrene	0.0097	1	0.0097
Indeno(1,2,3-cd)pyrene	0.004	0.1	0.0004
Dibenz(a,h)anthracene	0.004	1	0.004
	0.02		

Corrective Action Construction Completion Report

Pigeon Property 1705 Route 128 Westford, Vermont

DEC SMS#2019-4863

November 29, 2022

Prepared for:

Co-Operative Insurance Companies 292 Colonial Drive Middlebury, VT 05753

and

Vermont Department of Environmental Conservation Waste Management and Prevention Division One National Life Drive, Davis 1 Montpelier, VT 05620-3704

21 North Main Street Waterbury, Vermont 05676 (802) 917-2001

LEE Project # 19-138
Brownfields Phase II Environmental Site Assessment **Pigeon Property** Westford, Vermont Soil Data Summary

Page 1 of 4								
Sample Identification Sample Depth (ft. bg) PID Reading (ppm) Sample Date	UST-2 6 1,634 10/17/22	Dup UST-2 6 1,634 10/17/22	EPA Residential RSL (mg/kg)	EPA Industrial RSL (mg/kg)	VSS Residential (mg/kg)	VSS Non- Residential (mg/kg)		
VOCs, EPA Method 8260C (mg/kg)								
Dichlorodifluoromethane	ND<8	ND<5	87	370	-	-		
Chloromethane	ND<8	ND<5	110	460	-	-		
Vinyl Chloride	ND<2	ND<1	-	-	0.10	0.59		
Bromomethane	ND<8	ND<5	6.8	30	-	-		
Chloroethane (ethyl chloride)	ND<8	ND<5	14,000	57,000	-	-		
Trichlorofluoromethane	ND<8	ND<5	23,000	350,000	-	-		
Diethyl Ether	ND<4	ND<3	-	-	-	-		
Acetone	ND<200	ND<100	-	-	40,609	100,028		
1 ,1-Dichloroethene	ND<4	ND<3	230	1,000	-	-		
Methylene chloride	ND<8	ND<5	57	1,000	-	-		
Carbon disulfide	ND<8	ND<5	-	-	608	662		
MTBE	ND<8	ND<5	-	-	649	4,464		
trans-1,2-Dichloroethene	ND<4	ND<3	-	-	1,402	18,137		
1,1-Dichloroethane	ND<4	ND<3	-	-	2.1	13		
2,2-Dichloropropane	ND<4	ND<3	-	-	-	-		
cis-1,2-Dichloroethene	ND<4	ND<3	-	-	140	1,814		
2-Butanone (MEK)	ND<40	ND<30	-	-	16,952	26,991		
Bromochloromethane	ND<4	ND<3	-	-	193	597		
Tetrahydrofuran(THF)	ND<40	ND<30	-	-	-	-		
Chloroform	ND<4	ND<3	0.32	1.4	-	-		
1,1,1-Trichloroethane	ND<4	ND<3	8,100	36,000	-	-		
Carbon tetrachloride	ND<4	ND<3	-	-	0.37	2.2		
1,1-Dichloropropene	ND<4	ND<3	-	-	-	-		
Benzene	110	54	-	-	0.70	4.2		
1,2-Dichloroethane	ND<4	ND<3	-	-	0.29	1.7		
Trichloroethene (TCE)	ND<4	ND<3	-	-	0.68	6.5		
1,2-Dichloropropane	ND<4	ND<3	-	-	1.5	9.1		
Dibromomethane	ND<4	ND<3	24	99	-			
Bromodichloromethane	ND<4	ND<3	0.29	1.3	-			
4-Methyl-2-pentanone(MIBK)	ND<40	ND<30	33,000	140,000	-	-		
cis-1,3-Dichloropropene	ND<4	ND<3	1.8	8.2		-		
Toluene	990	540	-	-	706	798		
trans-1,3-Dichloropropene	ND<4	ND<3	1.8	8.2	-	-		
1,1,2-Trichloroethane	ND<4	ND<3	1.1	5	-	-		
2-Hexanone	ND<8	ND<5	200	1,300	-	-		
Tetrachloroethene (PCE)	ND<4	ND<3	4 4 4 4 4		2.4	14		
1,3-Dichloropropane	ND<4	ND<3	1,600	23,000	-	-		
Dibromochloromethane	ND<4	ND<1	8.3	39	-	-		
1,2-DIbromoetnane(EDB)	ND<2	ND<3	-	-	0.02	0.14		
Chlorobenzene	ND<4	ND<3	-	-	414	/26		

NOTES: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) from RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded. Blank Cell=no published value (VSS) or published value not applicable (RSL)

Brownfields Phase II Environmental Site Assessment **Pigeon Property** Westford, Vermont Soil Data Summary

		Page 2 of	4			
Sample Identification Sample Depth (ft. bg) PID Reading (ppm) Sample Date	UST-2 Dup UST- 6 6 1,634 1,634 10/17/22 10/17/22		EPA Residential RSL (mg/kg)	EPA Industrial RSL (mg/kg)	VSS Residential (mg/kg)	VSS Non- Residential (mg/kg)
VOCs, EPA Method 8260C (mg/kg) (co	ntinued)					
1,1,1,2-Tetrachloroethane	ND<4	ND<3	2	8.8	-	-
Ethylbenzene	270	150	-	-	3.7	22
mp-Xylene	970	530	-	-	252	257
o-Xylene	430	240	-	-	232	237
Styrene	ND<4	ND<3	6,000	35,000	-	-
Bromoform	ND<4	ND<3	19	86	-	-
IsoPropylbenzene (cumene)	24	13	-	-	256	264
Bromobenzene	ND<4	ND<3	290	1,800	-	-
1,1,2,2-Tetrachloroethane	ND<4	ND<3	0.6	2.7	-	-
1,2,3-Trichloropropane	ND<4	ND<3	-	-	0.00311	0.07
n-Propylbenzene	92	48	-	-	253	261
2-Chlorotoluene	ND<4	ND<3	1,600	23,000	-	-
4-Chlorotoluene	ND<4	ND<3	1,600	23,000	-	-
1,3,5-trimethylbenzene	180	91	-	-	144*	177*
tert-Butylbenzene	ND<4	ND<3	-	-	7,009	102,200
1,2,4-trimethylbenzene	570	300	-	-	144*	177*
sec-Butylbenzene	7.3	3.5	-	-	7,009	102,200
1,3-Dichlorobenzene	ND<4	ND<3	-	-	-	-
p-Isopropyltoluene (p-cymene)	130	69	-	-	-	-
1,4-Dichlorobenzene	ND<4	ND<3	2.6	11	-	-
1,2-Dichlorobenzene	ND<4	ND<3	1,800	9,300	-	-
n-Butylbenzene	ND<4	ND<3	-	-	3,504	51,100
1,2-Dibromo-3-chloropropane	ND<4	ND<3	0.0053	0.064	-	-
1,2,4-Trichlorobenzene	ND<4	ND<3	24	110	-	-
Hexachlorobutadiene	ND<4	ND<3	1.2	5.3	-	-
Naphthalene	74	47	-	-	2.7	16
1,2,3-Trichlorobenzene	ND<4	ND<3	63	930	-	-

1,2,3-Trichlorobenzene NOTES: Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule EPA Regional Screening Levels (RSLs) from RSL Summary Table. RSLs not included when a VSS exists. Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded. Dashed Cell=no published value (VSS) or published value not applicable (RSL) * Standard for 1,3,5 and 1,2,4 TMB

Brownfields Phase II Environmental Site Assessment **Pigeon Property** Westford, Vermont Soil Data Summary

		Page 3 of	f 4			
Sample Identification Sample Depth (ft. bg) PID Reading (ppm) Sample Date	UST-2 6 1,634 10/17/22	Dup UST-2 6 1,634 10/17/22	EPA Residential RSL (mg/kg)	EPA Industrial RSL (mg/kg)	VSS Residential (mg/kg)	VSS Non- Residential (mg/kg)
PAH EPA Method 8270D (mg/kg)						
Naphthalene	9.6	15	-	-	2.7	16
2-Methylnaphthalene	12	15	240	3,000	-	-
1-Methylnaphthalene	5.9	7.2	18	73	-	-
Acenaphthylene	0.064	0.059	-	-	-	-
Acenaphthene	0.060	0.061	3,600	45,000	-	-
Fluorene	0.17	0.17	-	-	2,301	26,371
Phenanthrene	0.33	0.32	-	-	-	-
Anthracene	0.059	0.045	18,000	230,000	-	-
Fluoranthene	0.18	0.16	-	-	2,301	26,371
Pyrene	0.20	0.18	1,800	23,000	-	-
Benzo(a)anthracene	0.090	0.072	1.1	21	-	-
Chrysene	0.086	0.069	110	2,100	-	-
Benzo(b)fluoranthene	0.11	0.091	1.1	21	-	-
Benzo(k)fluoranthene	0.047	ND<0.04	11	210	-	-
Benzo(a)pyrene	0.077	0.060	-	-	0.07	1.54
Indeno(1,2,3-cd)pyrene	0.076	0.062	1.1	21	-	-
Dibenz(a,h)anthracene	ND<0.04	ND<0.04	0.11	2.1	-	-
Benzo(g,h,i)perylene	0.082	0.072	-	-	-	-
Total Reported PAHs	29.1	38.6	-	-	-	-
PAH TEQ as Benzo(a)pyrene	0.13	0.10	-	-		0.58 (urban bkgd)
TOTAL METALS, EPA Method 6020	(mg/kg, dry)					
Total Arsenic	7.8	7.5	-	-	16	16
Total Barium	200	170	-	-	11,247	127,382
Total Cadmium	ND<0.5	ND<0.5	-	-	6.9	87
Total Chromium	47	43	-	-	40,223	360,223
Total Lead	65	56	-	-	400	800
Total Mercury	ND<0.1	ND<0.1	-	-	3.1	3.1
Total Selenium	ND<0.5	ND<0.5	390	5,800	-	-
Total Silver	ND<0.5	ND<0.5	-	-	237	2,483

 Iteda Silver
 NU<0.3</th>
 NU<0.3</th>

 NOTES:
 Vermont Soil Standards (VSS) and Statewide Background Concentrations from July 2019 DEC I-Rule

 EPA Regional Screening Levels (RSLs) from RSL Summary Table. RSLs not included when a VSS exists.

 Reported results or reporting limits equal to or in excess of residential soil thresholds are shaded.

 Dashed Cell=no published value (VSS) or published value not applicable (RSL)

Toxic Equivalency Calculations Pigeon Property Page 4 of 4

UST-2			
Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.090	0.1	0.009
Chrysene	0.086	0.001	0.000086
Benzo(b)fluoranthene	0.11	0.1	0.011
Benzo(k)fluoranthene	0.047	0.01	0.00047
Benzo(a)pyrene	0.077	1	0.077
Indeno(1,2,3-cd)pyrene	0.076	0.1	0.0076
Dibenz(a,h)anthracene	ND<0.04	1	0.02
	Total Benz	zo(a)pyrene Equivalent =	0.13
DUP UST-2			

Contaminant	Concentration (mg/kg)	Toxicity Equivalency Factor	Toxicity Equivalents to Benzo(a)pyrene
Benzo(a)anthracene	0.072	0.1	0.0072
Chrysene	0.069	0.001	0.000069
Benzo(b)fluoranthene	0.091	0.1	0.0091
Benzo(k)fluoranthene	ND<0.04	0.01	0.0002
Benzo(a)pyrene	0.060	1	0.06
Indeno(1,2,3-cd)pyrene	0.062	0.1	0.0062
Dibenz(a,h)anthracene	ND<0.04	1	0.02
	0.10		

Brownfields Phase II ESA Pigeon Property 1705 Route 128 Westford, Vermont

	Top of	Depth To	Depth To		Specific		Corrected	Corrected
Well I.D.	Casing	Product	Water	Product	Gravity	Water	Depth	Water Table
	Elevation	btoc	btoc	Thickness	Of Product	Equivalent	To Water	Elevation
MW-1R	99.51	_	2.62	-	-	-	-	96.89
MW-2	99.74	_	3.85	-	-	-	_	95.89
MW-3	99.03	_	12.14	-	-	-	-	86.89
MW-4	98.68	_	6.95	-	-	-	-	91.73
MW-5	81.18	_	Dry	-	-	-	_	-
MW-6	99.99	-	3.02	-	-	-	-	96.97
MW-7	100.30	_	0.51	-	-	-	-	99.79
MW-8	98.37	_	5.21	-	-	-	-	93.16

Notes:

All Values Reported in Feet

btoc - Below Top of Casing

Elevation data relative to 100' at SE corner of garage

Groundwater Sampling Data Summary **Pigeon Property** 1705 Route 128, Westford, Vermont Page 1 of 3

Groundwater Sample	MW-1R	MW-2	MW-6	MW-8	Duplicate		
Depth to Groundwater (Ft)	2.62	3.85	3.02	5.21	3.85	I-Rule	Vermont
pH (standard units)	6.74	6.62	6.46	6.79	6.62	Groundwater	Groundwater
Conductivity (umhos)	3,920	375	855	3,550	375	Vapor Intrusion	Enforcement
Temperature (celcius)	15.1	13.6	12.8	14.2	13.6	Standard-	Standard
Turbidity (n.t.u.)	557	477	116	632	477	Resident (ug/l)	(ug/l)
Sample Date	11/7/22	11/7/22	11/7/22	11/7/22	11/7/22		
VOCs, EPA Method 8260c VT Petroleum	n List (ug/l)						
Methyl-t-butyl ether (MTBE)	450	ND<1	ND<1	ND<1	ND<1	-	11
Benzene	5,800	ND<1	ND<1	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<100	ND<1	ND<1	ND<1	ND<1	-	5
Toluene	13,000	ND<1	ND<1	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	930	ND<1	ND<1	ND<1	ND<1	2.2	700
mp-Xylene	4,800	ND<1	ND<1	ND<1	ND<1	-	10000**
o-Xylene	2,000	ND<1	ND<1	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	310	ND<1	ND<1	ND<1	ND<1	330	23*
1,2,4-trimethylbenzene	1,100	ND<1	ND<1	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	250	ND<1	ND<1	ND<1	ND<1	790	23*
Naphthalene	150	ND<0.5	ND<0.5	1.2	ND<0.5	4	0.5
Total Reported VOCs	28,790	ND	ND	1.2	ND		

 Total Reported VOCs
 28,790
 ND
 ND

 NOTES:
 Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19
 Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

 Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.
 Dashed Cell - no standard

 * means total trimethylbenzenes ** means total xylenes
 **

Brownfields Supplemental Site Assessment Groundwater Sampling Data Summary **Pigeon Property** 1705 Route 128, Westford, Vermont Page 2 of 3

MW-1/MW-1R

Depth to Groundwater (Ft)	4.45	2.86	3.57	2.62	L Dulo	
pH (standard units)	6.27	7.24	7.11	6.74	I-Rule Croundwatan	Vermont
Conductivity (umhos)	7,460	2,390	3,430	3,920	Vanor Intrusion	Groundwater
Temperature (celcius)	16.0	8.2	5.6	15.1	Standard	Enforcement
Turbidity (n.t.u.)	138	711	635	557	Posidont (ug/l)	Standard (ug/l)
Sample Date	6/17/20	12/3/20	1/7/21	11/7/22	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)						
Methyl-t-butyl ether (MTBE)	2,100	ND<200	290	450	-	11
Benzene	14,000.	4,900.	5,900	5,800.	0.92	5
1,2-Dichloroethane	ND<100	ND<200	ND<100	ND<100	-	5
Toluene	34,000	15,000	19,000	13,000	-	1000
1,2-Dibromoethane(EDB)	ND<50	ND<100	ND<50	ND<50	-	0.05
Ethylbenzene	3,900	2,500	2,900	930	2.2	700
mp-Xylene	13,000	12,000	15,000	4,800	-	10000**
o-Xylene	6,000	5,700	6,800	2,000	-	10000**
1,3,5-trimethylbenzene	770	880	1,000	310	330	23*
1,2,4-trimethylbenzene	2,900	3,300	4,300	1,100	470	23*
1,2,3-trimethylbenzene	NT	950	1,100	250	790	23*
Naphthalene	640	710	690	150	4	0.5
Total Reported VOCs	77,310	45,940	56,980	28,790		

MW-2

Depth to Groundwater (Ft)	6.26	5.81	6.19	3.85	I. Deals	
pH (standard units)	6.41	6.78	6.75	6.62	I-Kule Croundwatan	Vermont
Conductivity (umhos)	520	473	497	375	Vanor Intrusion	Groundwater
Temperature (celcius)	12.3	10.3	7.3	13.6	Standard	Enforcement
Turbidity (n.t.u.)	173	749	814	477	Desident (ug/l)	Standard (ug/l)
Sample Date	6/17/20	12/3/20	1/7/21	11/7/22	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)						
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	ND<1	ND<1	-	11
Benzene	1.3	ND<1	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<1	ND<1	ND<1	ND<1	-	5
Toluene	1.1	ND<1	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	9.4	1.5	2	ND<1	2.2	700
mp-Xylene	18	ND<1	ND<1	ND<1	-	10000**
o-Xylene	2	ND<1	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	7.1	ND<1	1	ND<1	330	23*
1,2,4-trimethylbenzene	22	ND<1	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	NT	ND<1	ND<1	ND<1	790	23*
Naphthalene	5.3	ND<0.5	ND<0.5	ND<0.5	4	0.5
Total Reported VOCs	66	1.5	3	ND		

NOTES:

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19 Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19 Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

Groundwater Sampling Data Summary Pigeon Property 1705 Route 128, Westford, Vermont Page 3 of 3

_

MW-6								
Depth to Groundwater (Ft)	3.80	3.02	I Dula					
pH (standard units)	6.73	6.46	I-Rule	Vermont				
Conductivity (umhos)	812	855	Groundwater	Groundwater				
Temperature (celcius)	6.3	12.8	vapor intrusion	Enforcement				
Turbidity (n.t.u.)	853	116	Standard-	Standard (ug/l)				
Sample Date	1/7/21	11/7/22	Resident (ug/1)					
VOCs, EPA Method 8260c (ug/l)								
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	-	11				
Benzene	ND<1	ND<1	0.92	5				
1,2-Dichloroethane	ND<1	ND<1	-	5				
Toluene	ND<1	ND<1	-	1000				
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	-	0.05				
Ethylbenzene	ND<1	ND<1	2.2	700				
mp-Xylene	ND<1	ND<1	-	10000**				
o-Xylene	ND<1	ND<1	-	10000**				
1,3,5-trimethylbenzene	ND<1	ND<1	330	23*				
1,2,4-trimethylbenzene	ND<1	ND<1	470	23*				
1,2,3-trimethylbenzene	ND<1	ND<1						
Naphthalene	ND<0.5	ND<0.5	4	0.5				
Total Reported VOCs	ND	ND						

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

MW-8

Depth to Groundwater (Ft)	3.80	5.21	I Pulo	
pH (standard units)	6.73	6.79	Groundwater	Vermont
Conductivity (umhos)	812	3,550	Vanor Intrusion	Groundwater
Temperature (celcius)	6.3	14.2	Vapor intrusion Standard	Enforcement
Turbidity (n.t.u.)	853	632	D-sident (ug/l)	Standard (ug/l)
Sample Date	1/7/21	11/7/22	Resident (ug/1)	
VOCs, EPA Method 8260c (ug/l)				
Methyl-t-butyl ether (MTBE)	ND<1	ND<1	-	11
Benzene	ND<1	ND<1	0.92	5
1,2-Dichloroethane	ND<1	ND<1	-	5
Toluene	ND<1	ND<1	-	1000
1,2-Dibromoethane(EDB)	ND<0.5	ND<0.5	-	0.05
Ethylbenzene	ND<1	ND<1	2.2	700
mp-Xylene	ND<1	ND<1	-	10000**
o-Xylene	ND<1	ND<1	-	10000**
1,3,5-trimethylbenzene	ND<1	ND<1	330	23*
1,2,4-trimethylbenzene	ND<1	ND<1	470	23*
1,2,3-trimethylbenzene	ND<1	ND<1		
Naphthalene	2.9	1.2	4	0.5
Total Reported VOCs	2.9	1.2		

Groundwater Enforcement Standard from Vermont Groundwater Protection Rule 7/19

Groundwater Vapor Intrusion Standards from Vermont I-Rule 7/19

Reported results or reporting limits equal to or in excess of regulatory criteria are shaded.

Dashed Cell - no standard

* means total trimethylbenzenes ** means total xylenes

NR = no reading due to meter capabilty

APPENDIX C

BUDGETARY COST ESTIMATES

Alternative A Budgetary Cleanup Cost Estimate Clean Caps 1705 Route 128 Westford, Vermont 22-Dec-23

Task	Category	Description	No.		Per Unit Cost	Unit	Item Cost	Markup Factor	Total Item Cost	Subtotals
1.0	Pro construction									
1.0	Project Coordination	Geologist	8	0	\$120.00	/hr	\$960	1.00	\$960	
	Bid Document Assistance	Geologist	16	0	\$120.00	/hr	\$1,920	1.00	\$1 920	
	Review	Geologist	10	@	\$120.00	/hr	\$120	1.00	\$120	
	Contractor Preparation / Coordination	Geologist	6	@	\$120.00	/hr	\$720	1.00	\$720	\$3,720
2.0	Construction Inspection and Oversight (4 visi	ts)								
	Construction Inspection	Geologist	20	@	\$120.00	/hr	\$2,400	1.00	\$2,400	
	Travel	Geologist	4.8	@	\$120.00	/hr	\$576	1.00	\$576	
	Mileage	Expense	248	@	\$0.66	/ea	\$162	1.00	\$162	\$3,138
3.0	Capping and Soil Disposal Costs									
	Mobilization/Demobilization	Contractor	1	@	\$20,000.00	/ls	\$20,000	1.00	\$20,000	
	Soil Erosion Control	Contractor	1	@	\$4,000.00	/ls	\$4,000	1.00	\$4,000	
	Grading/Common Excavation	Contractor	425	@	\$19.00	/cy	\$8,066	1.00	\$8,066	
	Non-woven Geotextile fabric	Contractor	9,055	@	\$4.50	/sy	\$40,748	1.00	\$40,748	
	Clean Soil for Cap	Contractor	226	@	\$25.00	/cy	\$5,650	1.00	\$5,650	
	Gravel Sub-Base(18")	Contractor	3,748	@	\$4.00	/sf	\$14,992	1.00	\$14,992	
	Asphalt Type III (1.5") - Wearing	Contractor	3,148	@	\$3.00	/sf	\$9,444	1.00	\$9,444	
	Asphalt Type II (2") - Base	Contractor	3,148	@	\$3.00	/sf	\$9,444	1.00	\$9,444	
	Concrete	Contractor	600	@	\$12.00	/sf	\$7,200	1.00	\$7,200	
	Fencing/Gate	Contractor	665	@	\$75.00	/ft	\$49,875	1.00	\$49,875	
	Fine Grade, Seed, Mulch	Contractor	453	@	\$13.00	/sy	\$5,889	1.00	\$5,889	
	Characterization Sampling - Lab Fees	Laboratory	3	@	\$1,200.00	/ea	\$3,600	1.10	\$3,960	
	Clean Soil Sampling	Laboratory	2	@	\$500.00	/each	\$1,000	1.10	\$1,100	
	Soil Disposal (assumes non-daily cover)	Contractor	637	@	\$79.00	/ton	\$50,303	1.10	\$55,334	
	Soil Transport (assumes non-daily cover)	Contractor	637	@	\$34.00	/ton	\$21,650	1.10	\$23,814	
	Soil Transport Fuel Surcharge (24%)	Contractor	1	@	0.24	/total	\$5,715	1.10	\$6,287	
	District Fee (disposal)	Contractor	637	@	\$25.00	/ton	\$15,919	1.10	\$17,511	
	Groundwater Monitoring Well Abandonment	Contractor	8	@	\$400.00	/each	\$3,200	1.10	\$3,520	\$286,833
4.0	As-Built Report Preparation									
	Report	Senior Scientist	28	@	\$120.00	/hr	\$3,360	1.00	\$3,360	
	Drafting	Draftsperson II	4	@	\$80.00	/hr	\$320	1.00	\$320	
	Review	Senior Scientist	2	@	\$120.00	/hr	\$240	1.00	\$240	\$3,920

Cleanup Cost	\$297,611
15% Contingency	\$44,642
Total Cost For Project	\$342,253

Alternative B Budgetary Cleanup Cost Estimate Removal of all Contaminated Soil 1705 Route 128 Westford, Vermont 22-Dec-23

					Per Unit		Item	Markup	Total	
Tas	k Category	Description	No.		Cost	Unit	Cost	Factor	Item Cost	Subtotals
4	0 Due construction									
1.	Device the construction	Carlaniat	0	0	¢120.00	/h	¢0.00	1.00	¢0.0	
	Project Coordination	Geologist	8	w Ø	\$120.00	/nr	\$960	1.00	\$960	
	Bid Document Assistance	Geologist	10	w Ø	\$120.00	/nr	\$1,920	1.00	\$1,920	
	Review	Geologist	1	w O	\$120.00	/nr	\$120	1.00	\$120	¢0.500
	Contractor Preparation / Coordination	Geologist	0	w	\$120.00	/nr	\$720	1.00	\$720	\$3,720
2.	0 Construction Inspection and Oversight (8 vis	sits)								
	Construction Inspection	Geologist	64	@	\$120.00	/hr	\$7,680	1.00	\$7,680	
	Travel	Geologist	9.6	@	\$120.00	/hr	\$1,152	1.00	\$1,152	
	Mileage	Expense	496	@	\$0.66	/ea	\$325	1.00	\$325	\$9,157
	ů –					,				
3.	0 Soil Excavation and Disposal Costs									
	Mobilization/Demobilization	Contractor	1	@	\$20,000.00	/ls	\$20,000	1.00	\$20,000	
	Soil Erosion Control	Contractor	1	@	\$4,000.00	/ls	\$4,000	1.00	\$4,000	
	Grading/Common Excavation	Contractor	958	@	\$19.00	/cy	\$18,202	1.00	\$18,202	
	Clean Soil Replacement	Contractor	958	@	\$25.00	/cy	\$23,950	1.00	\$23,950	
	Seed, Mulch	Contractor	13,895	@	\$8.00	/sy	\$111,160	1.00	\$111,160	
	Characterization Sampling - Lab Fees	Laboratory	4	@	\$1,200.00	/ea	\$4,800	1.10	\$5,280	
	Clean Soil Sampling	Laboratory	2	@	\$500.00	/each	\$1,000	1.10	\$1,100	
	Soil Disposal (assumes non-daily cover)	Contractor	1,437	@	\$79.00	/ton	\$113,523	1.10	\$124,875	
	Soil Transport (assumes non-daily cover)	Contractor	1,437	@	\$34.00	/ton	\$48,858	1.10	\$53,744	
	Soil Transport Fuel Surcharge (24%)	Contractor	1	@	0.24	/total	\$12,899	1.10	\$14,188	
	District Fee (disposal)	Contractor	1,437	@	\$25.00	/ton	\$35,925	1.10	\$39,518	
	Groundwater Monitoring Well Abandonment	Contractor	8	@	\$400.00	/each	\$3,200	1.10	\$3,520	\$419,537
4.	Contribution Sample Collection	Carlaniat	0	0	¢120.00	<i>n</i>	¢0.000	1.00	¢0(0.00	
	Coordination	Geologist	8	w Ø	\$120.00	/nr	\$960.00	1.00	\$960.00	
	Confirmation Sample Collection	Expense	10	w Ø	\$1,000.00	/ea	\$1,000.00	1.00	\$1,000.00	
	Confirmation Analysis-Metals	Expense	10	æ	\$113.00	/ea	\$1,130.00	1.10	\$1,243.00	** = < =
	Confirmation Analysis-PAHs	Expense	10	æ	\$124.00	/ea	\$1,240.00	1.10	\$1,364.00	\$4,567
5.	0 As-Built Report Preparation									
	Report	Senior Scientist	40	@	\$120.00	/hr	\$4,800	1.00	\$4,800	
	Drafting	Draftsperson II	4	@	\$80.00	, /hr	\$320	1.00	\$320	
	Review	Senior Scientist	2	@	\$120.00	, /hr	\$240	1.00	\$240	\$5,360
				-		,				

\$442,341
\$66,351
\$508,692

Alternative C Budgetary Cleanup Cost Estimate Pigeon Property 1705 Route 128 Westford, Vermont 22-Dec-23

				Per Unit	Item	Markup	Total		
Task Category	Description	No.		Cost	Unit	Cost	Factor	Item Cost	Subtotals
1.0 Final Design / Permitting / Contractor Bid	Support								
Project Coordination	Geologist	6	@	\$120.00	/hr	\$720	1.00	\$720	\$720
2.0 Construction Inspection and Oversight (1 v	visit)								
Construction Inspection	Geologist	6	@	\$120.00	/hr	\$720	1.00	\$720	
Travel	Geologist	1.2	@	\$120.00	/hr	\$144	1.00	\$144	
Mileage	Expense	62	@	\$0.66	/ea	\$41	1.00	\$41	\$905
3.0 Construction Costs									
Mobilization/Demobilization	Contractor	1	@	\$500.00	/ls	\$500	1.00	\$500	
Fencing/Gate	Expense	665	@	\$75.00	/ft	\$49,875	1.10	\$54,863	
Groundwater Monitoring Well Abandonment	Contractor	8	@	\$400.00	/each	\$3,200	1.10	\$3,520	\$58,883
4.0 As-Built Report Preparation									
Report	Geologist	8	@	\$120.00	/hr	\$960	1.00	\$960	
Drafting	Draftsperson II	2	@	\$80.00	/hr	\$160	1.00	\$160	\$1,120
Review	Geologist	1	@	\$120.00	/hr	\$120	1.00	\$120	\$1,240

 Cleanup Cost
 \$62,867

 15% Contingency
 \$9,430

 Total Cost For Project
 \$72,297